[10	<u>53</u>]
<u> </u>	

SEAT No.

No. of printed pages: 2

Time: 2.00 To 5.00 p.m.

SARDAR PATEL UNIVERSITY

M. Sc. (Semester III) Examination

Date: 25-3-2019, Monday	
Subject: MATHEMATICS	Paper No. PS03CM

Paper No. PS03CMTH23 - (Functional Analysis II)

Total Marks: 70

Note: Throughout the paper, X and Y denote nlspaces.

1. Choose the correct option for each question:

[8]

- (1) If $E \subset X$ is convex, then which of the following sets may not be convex?
 - (a) E^0
- (b) \bar{E}
- (c) E^c
- (d) none of these
- (2) Every linear functional on X is continuous, if X =
 - (a) l^1
- (b) Cⁿ
- (c) C[0, 1]
- (d) none of these
- (3) Let X & Y be nlspaces. Which of the following need not be a Banach space?
 - (a) BL(X, K)
- (b) BL(X,Y)
- (c) BL(X',Y)
- (d) none of these
- (4) A map F: $(C^1[0,1], ||..||_{\infty}) \to (C[0,1], ||...||_{\infty})$ defined by F(x) = x' is
 - (a) closed but not continuous
- (b) closed and continuous
- (c) continuous but not closed
- (d) none of these
- (5) If $p < r < \infty$, then which of the following is true?
 - (a) $l^p \subset l^\infty$
- (b) $l^r \subset l^p$
- (c) $l^{\infty} \subset l^r$
- (d) $l^p = l^r$
- (6) For $x \in X$, let $j_x: X' \to K$ be defined by $j_x(f) = f(x)$. Then $||j_x|| =$
 - (a) 1
- (b) ||f||
- (c) |x|
- (d) none of these

- (7) If $\dim X = n$, then $\dim BL(X, K)$ is
 - (a) n^2
- (b) n
- (c) n-1
- (d) n + 1
- (8) Let I be the identity operator on X. Then $\sigma(I) =$
 - (a) Ø
- (b) $\{0,1\}$
- $(c) \{0\}$
- (d) {1}

2. Attempt any SEVEN:

[14]

- (a) State Holder's inequality.
- (b) Let $E_1, E_2 \subset X$ and E_1 be open in X. Show that $E_1 + E_2$ is open in X.
- (c) Show that $\|.\|_1$ and $\|.\|_{\infty}$ are comparable norms on K^n .
- (d) State Uniform Boundedness Principle.
- (e) Let X be a Banach space. If a series $\sum_{n} x_n$ of elements of X is absolutely summable, then show that it is summable in X.
- (f) Prove: If a projection P on X is a closed map, then R(P) and Z(P) are closed in X.
- (g) For $A \in BL(X)$, define $\sigma_c(A)$, $\sigma_a(A)$ and show that $\sigma_e(A) \subset \sigma_a(A)$.
- (h) Let $F \in BL(X, Y)$. Show that ||F|| = ||F'||.
- (i) Let $F: X \to Y$ be a linear map. Prove that if F is continuous, then it sends every Cauchy sequence in X to Cauchy sequence in Y.

Let Y be a closed subspace of a nls X. Show that, for $x + Y \in X/Y$, 3. [6] $|||x+Y||| = \inf\{||x+y||: y \in Y\} \text{ defines a norm on } X/Y.$ Let $F \in BL(X,Y)$. Define a map $\widetilde{F}: X/Z(F) \to Y$ by $\widetilde{F}(x + Z(F)) = F(x)$. Show [6] that \widetilde{F} is linear and continuous. OR Prove: If $dimX < \infty$, then every linear map from X to Y is continuous. [6] 4. Prove: A Banach space cannot have a denumerable basis. (a) [6] State the Hahn-Banach extension theorem and show that the Hahn-Banach [6] extension may not be unique. OR Prove: The space $(C[0,1], \|.\|_{\infty})$ is complete. [6] 5. (a) Prove: A subset $E \subset X$ is bounded if and only if f(E) is bounded in K, for every [6] $f \in X'$. Prove: If X and Y are Banach spaces and F: $X \rightarrow Y$ is a closed linear map, then [6] F is continuous. OR (b) State and prove Open mapping theorem. [6] (a) Let $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. For $y \in Y$, let $f_y(x) = \sum_{j=1}^{\infty} x(j)y(j)$, $x \in l^p$. 6. [6] Prove that $f_y \in (l^p)'$ and $||f_y|| = ||y||_q$. (b) Let $F, G \in BL(X, Y)$ & $k \in K$. Prove that (F + G)' = F' + G' and (kF)' = kF'. [6] OR

X-X-X-X-X

bounded below and surjective.

Let X be a nls and $A \in BL(X)$. Prove that A is invertible if and only if A is

[6]

