No of printed pages: 2 ## Sardar Patel University Mathematics M.Sc. Semester III Tuesday, 19 March 2019 2.00 p.m. to 5.00 p.m. | 2.00 p.m. to 5.00 p.m.
PS03CMTH21 - Real Analysis II | | | | | | |---|---|-------------------------------------|---|---|------| | | | | | Maximum Marks: 70 | | | | Q.1 Choose the correct option for each of the following. (1) Which of the following functions is not integrable over $(\mathbb{N}, P(\mathbb{N}), \eta)$? | | | | | | | (a) $f(n) = \frac{1}{n}$ | (b) $f(n) = \frac{1}{n^2}$ | (c) $f(n) = \frac{1}{n^3}$ | (d) $f(n) = \frac{1}{n^4}$ | | | (2) | Which of the following is not a σ - finite measure space? | | | | | | | (a) $(\mathbb{N}, P(\mathbb{N}), \eta)$ | (b) $(\mathbb{R}, \mathfrak{M}, m)$ | (c) $(\mathbb{R}, \mathcal{B}, m)$ | (d) $(\mathbb{R}, P(\mathbb{R}), \eta)$ | | | (3) | Let m be the Lebesgue measure. Consider the signed measure $\nu = \delta_0 - m$ on $(\mathbb{R}, \mathfrak{M})$. Which of the following is a positive set for ν ? | | | | | | | (a) Q | (b) [0, 1] | (c) $\mathbb{R} - \mathbb{Q}$ | (d) [1, 2] | | | (4) | Let η be the counting measure and μ be a measure on $(\mathbb{R}, \mathfrak{M})$. Which of the following is true? | | | | | | | (a) $\eta \perp \mu$ | (b) $\eta \ll \mu$ | (c) $\mu \ll \eta$ | (d) $\mu + \eta \ll \mu$ | | | (5) | If $f(x) = \sin x$ for all $x \in \mathbb{R}$, then | | | | | | | (a) $ f _{\infty} = 1$ | (b) $ f _{\infty} = 0$ | (c) $ f _{\infty} = -1$ | (d) $ f _{\infty} = [-1, 1]$ | | | (6) | Let $1 \le p < q \le \infty$. Which of the following is true? | | | | | | | (a) $L^p(\mathbb{R}) \subset L^q(\mathbb{R})$
(b) $L^p(\mathbb{R}) \supset L^q(\mathbb{R})$ | | (c) $L^p([0,1]) \subset L^q([0,1])$
(d) $L^p([0,1]) \supset L^q([0,1])$ | | | | (7) | Let η be the counting measure and δ_0 be the Dirac measure concentrated at 0. Which of the following is an outer measure on \mathbb{R} ? | | | | | | | (a) m | (b) $m + \delta_0$ | (c) $\delta_0 - \eta$ | (d) $\eta + \delta_0$ | | | (8) | Let μ^* be an outer measure on X and $E, F \subset X$. Which of the following is true? | | | | | | | (a) $\mu^*(E) \le \mu^*(E \cap F)$
(b) $\mu^*(F \cup E) \le \mu^*(E)$ | | (c) $\mu^*(E \cup F) > \mu^*(E)$
(d) $\mu^*(E \cup F) \le \mu^*(F - E) + \mu^*(E - F)$ | | | | (a)
(b)
(c) | Attempt any Seven . [1 Show that the measure space $(\mathbb{R}, \mathfrak{M}, m)$ is complete. Show that every σ - finite measure space is saturated. If f be a nonnegative measurable function on a measure space (X, \mathscr{A}, μ) and if $\int_X f d\mu = 0$, then show that $f = 0$ a.e. $[\mu]$ on X . | | | | [14] | | (d) | Show that every mea | asurable subset of a p | positive set is a posit | ive set. |) | - (e) If ν is a signed measure and μ is a measure on a measurable space $(X, \mathscr{A}), \nu \perp \mu$ and $\nu \ll \mu$, then show that $\nu = 0$. - (f) If f is essentially bounded, then show that f is finite a.e. $[\mu]$ on X. - (g) Let $f: \mathbb{R} \to \mathbb{R}$ be $f = \chi_{[1,2]}$. Calculate $||f||_p$ for all $1 \le p \le \infty$. - (h) Let $E \subset X$ and $\mu^*(E) = 0$. Show that E is measurable. - (i) Let μ be a measure on an algebra \mathcal{A} of subsets of X, and let μ^* be the induced outer measure. If $A \subset X$ and $\epsilon > 0$, then show that there is an \mathcal{A}_{σ} - set E with $E \supset A$ such that $\mu^*(E) \leq \mu^*(A) + \epsilon$. Q.3 - (a) Let (X, \mathscr{A}) be a measurable space, and let D be a dense subset of \mathbb{R} . Suppose that for each $\alpha \in D$ there is an associated $B_{\alpha} \in \mathcal{A}$ such that $B_{\alpha} \subset B_{\alpha'}$ whenever $\alpha < \alpha'$. Show that there is a measurable function f on X such that $f \leq \alpha$ on B_{α} and $f \geq \alpha$ on B_{α}^{c} for every $\alpha \in D$. - (b) Let (X, \mathcal{A}, μ) be a measure space, and let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on X converging to a function f (pointwise) on X. Show that $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu$. - (b) Let f be a measurable function on a measure space (X, \mathcal{A}, μ) . Show that $\int_E f d\mu = 0$ for all $E \in \mathscr{A}$ if and only if f = 0 a.e. $[\mu]$ on X. Q.4 - (c) Let ν be a signed measure on a measurable space (X, \mathscr{A}) , and let $E \in \mathscr{A}$ with $0 < \nu(E) < \infty$. Show that E contains a positive set A with $\nu(A) > 0$. - (d) Let ν be a measure and μ be a σ finite measure on a measurable space (X, \mathscr{A}) , and let $\nu \ll \mu$. If f is a nonnegative measurable function on X, then show that $\int_E f d\nu = \int_E f \left[\frac{d\nu}{d\mu} \right] d\mu$ for every $E \in \mathscr{A}$. - OR. (d) Let ν and μ be σ - finite measures on a measurable space (X, \mathscr{A}) . Prove that there exists a pair of measures ν_0 and ν_1 such that $\nu_0 \perp \mu$, $\nu_1 \ll \mu$ and $\nu = \nu_0 + \nu_1$. Q.5 (e) If $1 \le p < \infty$, then show that $L^p(\mu)$ is complete. [6] (f) Let $1 \leq p < \infty$. Let $f \in L^p(\mu)$, and let $\epsilon > 0$. Prove that there is a measurable [6] simple function φ vanishing outside a set of finite measure such that $\|f - \varphi\|_p < \epsilon$. [6] (f) State and prove Holder's inequality. Q.6 - (g) Let μ be a σ finite measure on an algebra $\mathcal A$ of subsets of X, and let μ^* be the outer [6] measure induced by μ . Show that a subset E of X is (μ^*) - measurable if and only if E can be expressed as a difference E = A - B, where A is an $\mathcal{A}_{\sigma\delta}$ - set and $\mu^*(B) = 0$. - (h) Let μ^* be an outer measure on X. If $\{E_n\}$ is a sequence of pairwise disjoint measurable subsets of X and $A \subset X$, then show that $\sum_n \mu^*(A \cap E_n) = \mu^*(A \cap (\bigcup_n E_n))$. [6] - (h) Let μ^* be an outer measure on X. Show that the collection $\mathbb B$ of all μ^* measurable subsets of X is a σ - algebra.