M.Sc. (Mathematics) (Semester-III); Examination 2019

PS03CMTH02: Mathematical Methods-I

Date: 22nd March, 2019

Full Marks: 70

Friday

Time: 2:00 pm to 5:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Assume usual/standard notations wherever applicable.
- 3. Figures to the right indicate full marks.

Choose the most appropriate option for each of following question: Q-1

[8]

- The inverse Laplace transform of $\frac{1}{s^2 + k^2}$ **(1)**

- (a) $\sin kt$ (b) $\cos kt$ (c) $K \cos kt$ (d) none of these
- (2) The inverse Laplace transform of $\frac{1}{c}$
 - (a) $1-\sin t$
- (b) $1 + \cos t$ (c) 1 (d) $1 + \sin t$

- (3) Find $L\{0\} =$ _____

- (a) 1 (b) 0 (c) πs (d) $\frac{\pi}{2} s$
- (4) $\sum_{n=1}^{\infty} \frac{1}{n} =$ _____

- (a) ∞ (b) $\frac{2}{\pi}$ (c) π (d) none of these
- $(5) Z\left\{\frac{x^n}{n!}\right\} = \underline{\hspace{1cm}}$
 - (a) $\exp\left(\frac{x}{z}\right)$ (b) $\exp(x)$ (c) $\exp(z)$ (d) $\exp\left(\frac{z}{x}\right)$

- (6) Fourier coefficient a_0 of the Fourier series of 2π periodic function
 - $f(x) = x, -\pi < x \le \pi \text{ is}$ (a) 2 (b) 0 (c) 1
- (d) 0.5
- (7) $Z\{1^n\} =$ (a) $\frac{1}{z+1}$ (b) $\frac{z}{z+1}$ (c) $\frac{z}{z-1}$ (d) $\frac{1}{z-1}$

(8) For $a \neq 0$ then Fourier transform of f(ax) is

(a)
$$F(s-a)$$
 (b) $\frac{1}{a}F(\frac{a}{s})$ (c) $e^{-isa}F(s)$ (d) $\frac{1}{a}F(\frac{s}{a})$

Q-2 Attempt any Seven

[14]

(a) Find
$$L^{-1} \left\{ \frac{1}{s^2 + 5s + 6} \right\}$$

- (b) State Dirichlet theorem for the convergence of Fourier series.
- (c) Define Fourier series with Fourier coefficients
- (d) Find $L\{1*1\}$

(e) Prove that
$$L\left\{\frac{f(t)}{t}\right\} = \int_{a}^{\infty} L\{f(u)\}du$$

- (f) State Linearity property and 1st shifting theorem for Laplace transform
- (g) Find the inverse Z transform of $\cos \alpha n$; $\alpha \in R$
- (h) Find $H_2(x)$
- (i) Compute the period of $\cos\left(\frac{x}{3}\right)$.

Q-3 (a) Find the Fourier series of a periodic function f(x) = |x|; $-\pi \le x \le \pi$ [6]

hence find $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$

(b) Compute the Fourier series of the function $f(x) = x - x^2$; $-1 \le x \le 1$ defined in

hence find
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 [6]

OR

(b) Compute the Fourier series of a 2π periodic function $f(x) = x^2$ hence find $\sum_{n=1}^{\infty} \frac{1}{n^4}$

Q-4 (a) Compute the Laplace transforms of $\frac{1-\cos 2t}{t}$ and $\frac{\cos 2t - \cos 3t}{t}$ [6]

(b) Using Laplace transform Solve
$$y'' + 9y = \cos 2t$$
; $y(0) = 1 = y'(0)$

OR

(b) State Convolution theorem and hence obtain Inverse Laplace transform of $\frac{1}{(s-1)(s^2+1)}$

- Q-5 (a) Let a > 0 then compute Fourier transform of $\exp(-ax^2)$ [6]
 - (b) Define Fourier cosine transform and hence evaluate: $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ [6]
 - (b) Solve $u_t = ku_{xx}$ (x,t>0) subject to u(x,0)=0 and $u_x(0,t)=-a$ also both $u,u_x\to 0$ as $x\to \infty$
- Q-6 (a) Orthonormalize $\{1, x, x^2, x^3\}$ over [-1, 1]
 - (b) Define Hermite polynomials. State its recurrence relation and orthogonal property. [6]

OR

(b) Define Z transform. State and prove Linearity property of Z-transfrom and

Evaluate: $Z\{(n+1)^2\}$

•