[14]

[59/A-8]

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester III

Tuesday, 19 March 2019

2.00 p.m. to 5.00 p.m.

PS03CMTH01 - Real Analysis II

Maximum Marks: 70

-	Choose the correct option for each of the following. Let $\mathbb B$ be the collection of all Borel subsets of $\mathbb R$, and let $\mathfrak M$ be the collection of all measurable subsets of $\mathbb R$. Which of the following is true?				[8]
	(a) $\mathfrak{M} \subset \mathbb{B}$	(b) $\mathfrak{M}\supset \mathbb{B}$	(c) $\mathfrak{M} = \mathbb{B}$	(d) none of these	
(2)	The counting measure on \mathbb{Z} fails to be measure.				
	(a) finite	(b) σ -finite	(c) complete	(d) saturated	
(3)	If η is the counting and δ_0 is the point mass measure at 0, then $(\eta - \delta_0)(\mathbb{Q} \cap [-1, 1]) = \dots$				
	(a) 0	(b) 1	(c) 2	(d) ∞	
(4)	Let ν be a signed measure on (X, \mathscr{A}) . Which of the following is not a measure?				
	(a) $ \nu $	(b) ν^{+}	(c) ν ⁻	(d) $-\nu^{-}$	
(5)	Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = \cos x$. Then the value of $ f _{\infty}$ is				
	(a) 0	(b) 1	(c) -1	(d) ∞	
(6)	If $f, g \in L^2(\mu)$, then fg belongs to				
	(a) $L^{1}(\mu)$	(b) $L^{2}(\mu)$	(c) $L^{\infty}(\mu)$	(d) $L^1(\mu) \cap L^2(\mu)$	
(7)	If μ^* is an outer measure on X and if $E \subsetneq F$, then which of the following is true?				
	(a) $\mu^*(E) \le \mu^*(F)$ (b) $\mu^*(E) < \mu^*(F)$		(c) $\mu^*(E) = \mu^*(F)$ (d) $\mu^*(F - E) = \mu^*(F) - \mu^*(E)$		
(8)	Let \mathcal{A}_1 and \mathcal{A}_2 be algebras on X. Which of the following is an algebra on X?				
	(a) $\mathscr{A}_1 \cap \mathscr{A}_2$	(b) $\mathscr{A}_1 \cup \mathscr{A}_2$	(c) $\mathscr{A}_1 - \mathscr{A}_2$	(d) none of these	
Ω.2	2 Attempt any Seven.				[14
(a) (b) (c)	Show that finite union of sets of finite measure is of finite measure. If a set E is measurable, then show that χ_E is measurable. Let f be a nonnegative measurable function on a measure space (X, \mathscr{A}, μ) . If $\int_X f d\mu = 0$, then show that $f = 0$ a.e. $[\mu]$ on X . Let E be a positive set with respect to a signed measure ν . If F is a measurable subset of E , then show that F is a positive set.				
(e)	If $\{A,B\}$ and $\{A_1,B_1\}$ are Hahn decompositions of (X,\mathscr{A},ν) , then show that $A\Delta A_1$ is a				
(f)	null set. If α is an essential bound of f , then show that $\alpha + \epsilon$ is an essential bound of f foe all $\epsilon \geq 0$.				
(g)	State Riesz representa	ation theorem.		(P.TO)	

- (h) Let μ be a measure on an algebra $\mathscr A$ of subsets of X. Let $\{A_i\}\subset \mathscr A$ and $A\in \mathscr A$ with $A \subset \bigcup_i A_i$. Show that $\mu(A) \leq \sum_i \mu(A_i)$.
- (i) If F is a cumulative distribution of a Baire measure μ , then show that F is right continuous on \mathbb{R} .

Q.3

- (a) Let (X, \mathcal{A}) be a measurable space, and let f be a nonnegative measurable function X. Show [6] that there is an increasing sequence $\{s_n\}$ of nonnegative measurable simple functions on Xconverging to f (pointwise) on X.
- (b) Let (X, \mathcal{A}, μ) be a measure space, and let $\{f_n\}$ be an increasing sequence of nonnega-[6] tive measurable functions on X converging to a function f (pointwise) on X. Show that $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu.$

(b) Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, \mathcal{A}, μ) converging to [6] a function f (pointwise) on X. If g is integrable over X and $|f_n| \leq g$ on X for all n, then show that $\int_X f d\mu = \lim_n \int_X f_n d\mu$. Q.4

(c) Let ν be a signed measure on a measurable space (X, \mathscr{A}) , and let $E \in \mathscr{A}$ with $0 < \nu(E) < \infty$. 6 Show that E contains a positive set A with $\nu(A) > 0$.

(d) Let (X, \mathcal{A}, μ) be a measure space, and let f be an integrable function. Let $\nu : \mathcal{A} \to [-\infty, \infty]$ [6] be $\nu(E)=\int_E f d\mu$ for all $E\in\mathscr{A}$. Show that ν is a finite signed measure and find Hahn decomposition of ν .

OR

(d) Let ν be a measure and μ be a σ - finite measure on a measurable space (X, \mathscr{A}) , and let [6] $\nu \ll \mu$. If f is a nonnegative measurable function on X, then show that $\int_E f d\nu = \int_E f[\frac{d\nu}{d\mu}]d\mu$ for every $E \in \mathscr{A}$.

Q.5

- (e) Let (X, \mathcal{A}, μ) be a measure space, and let $1 \leq p < \infty$. Prove that $(L^p(\mu), \|\cdot\|_p)$ is complete. [6]
- (f) Let $1 \leq p < \infty$. Let $f \in L^p(\mu)$, and let $\epsilon > 0$. Prove that there is a measurable simple [6] function φ vanishing outside a set of finite measure such that $\|f - \varphi\|_p < \epsilon$.

OR

(f) Let (X, \mathcal{A}, μ) be a finite measure space, and let $1 \leq p < \infty$. Suppose that g is an integrable [6] function on (X, \mathscr{A}, μ) satisfying $\left| \int_X g\varphi d\mu \right| \leq M \|\varphi\|_p$ for some M>0 and for all measurable simple functions φ . Prove that $g \in L^q(\mu)$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Q.6

- (g) Let μ^* be an outer measure on X. Let $\mathbb B$ be the σ algebra of measurable subsets of X. [6] Define $\overline{\mu}: \mathbb{B} \to [0, \infty]$ by $\overline{\mu}(E) = \mu^*(E)$ for every $E \in \mathbb{B}$. Show that $\overline{\mu}$ is a complete measure on B.
- (h) Let μ be a σ finite measure on an algebra $\mathcal A$ of subsets of X, and let μ^* be the outer [6] measure induced by μ . Show that a subset E of X is (μ^*) - measurable if and only if E can be expressed as a difference E = A - B, where A is an $\mathcal{A}_{\sigma\delta}$ - set and $\mu^*(B) = 0$.
- (h) Let μ be a measure on an algebra \mathcal{A} , and let μ^* be the induced outer measure. Let \mathbb{B} be the σ - algebra of all (μ^*) - measurable subsets of X, and let \mathbb{B}' be the smallest σ - algebra of subsets of X containing A. If μ is σ - finite, then show that the restriction of $\overline{\mu}$ to \mathbb{B}' is the unique extension of μ to \mathbb{B}' .