SEAT No. No. of printed pages: 2 [41/A-15] SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination (NG) Time: 2.00 To 5.00 p.m. Date: 21-4-2018 Paper No. PS03EMTH25 - (Graph Theory - I) Subject: MATHEMATICS Total Marks: 70 Choose the correct option for each question: [8] If $K_{1,n} = K_{n+1}$, then (1)(a) n = 1 (b) n = 2 (c) n > 2(d) none of these The complete graph K₈ is (2) (d) disconnected (c) Eulerian (a) bipartite (b) Hamiltonian (3) Let T be a spanning in-tree with root R. Then (c) $d^{+}(R) = 0$, $d^{-}(R) > 0$ (a) $d^{+}(R) > 0$, $d^{-}(R) > 0$ $(d) d^{+}(R) = 0, d^{-}(R) = 0$ (b) $d^{-}(R) = 0$, $d^{+}(R) > 0$ If G is a simple digraph with vertices $\{v_1, v_2, ..., v_n\}$ & e edges, then $\sum_{i=1}^n d^+(v_i) =$ (b) e^2 (a) ne (c) 2e (d) e Which of the following graphs is not uniquely colourable? (5) $(d) C_6$ (b) P₆ (6)The coefficient c_3 in chromatic polynomial of K_4 is (d) 3!(c)3(a) 0(b) 1 Let G be a simple graph without isolated vertex. Then a matching M in G is (c) maximal \Rightarrow maximum (a) maximum \Rightarrow perfect (b) maximal \Rightarrow perfect (d) maximum \Rightarrow maximal (8) If $G = K_{2,n}$, then $\alpha(G) = ____.$ (c) $\max\{2, n\}$ (d) $min\{2, n\}$ (a) 2(b) n

2. Attempt any SEVEN:

1.

[14]

- (a) Find the radius of $K_{2,3}$.
- (b) Find |E(G)|, if G is a complete, symmetric digraph with n vertices.
- (c) Define fundamental circuit matrix in a digraph.
- (d) Define Hamiltonian cycle and Hamiltonian graph.
- (e) Prove or disprove: For any planer graph G, $\chi(G) \leq 3$.
- (f) Prove: The chromatic polynomial of P_4 and $K_{1,3}$ are same.
- (g) Define isomorphic graphs and give one example of it.
- (h) Prove or disprove: For any graph G, $\alpha(G) = \beta'(G)$.
- (i) Define maximum matching and perfect matching in a graph.

CP. T. O.)

3. (a) Prove that if G is connected Euler digraph, then it is balanced. [6] (b) Define symmetric and complete symmetric digraph and give one example of each. [6] Also, discuss the relation between them. Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2, ..., v_n$ [6] such that $d^+(v_i)=i-1$ and $d^-(v_i)=n-i$ for each i=1,2,...n. Define arborescence and show that an arborescence is a tree in which every vertex .(a) [6] other than the root has an in - degree exactly one. Show that the determinant of every square sub matrix of incidence matrix A(G) of [6] a digraph G is 1, -1 or 0. OR Let G be a connected digraph with n vertices. Prove that rank of A(G) = n - 1. [6] 5. Prove: For a connected graph G, $\chi(G) = 2$ if and only if G has no odd cycle. (a) [6] (b) Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G-S) \leq |S|$. [6] Find the Chromatic polynomial of graph C₄. (b) [6] 6. (a) Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$. [6] State Hall's theorem and show that a k-regular bipartite graph has a perfect (b) [6] matching. (b) Define $\alpha(G)$ and $\beta(G)$ and find it with corresponding sets, for $G = K_{3,5}$. [6]