		SEAT NO.				
[40] Date: 21-4-2018 Subject: MATHEMATIC			SARDAR PATEL UNIVERSITY M. Sc. (Semester 122) Examination S Paper No. PS03EMTH23 – (G		No. of printed pages: 2 Time: 2.00 To 5.00 p.m. raph Theory – II)	
1.		Choose the correct		[8]		
	(1)	The graph K ₉ can	be decomposed into	copies of		
		(a) $K_{1,5}$	(b) P ₅	(c) P ₄	(d) none of these	
	(2)			same, then the graph		
	(2)	(a) Cycle graph	_	(c) Star graph	(d) $K_{n, n}$ (n > 1)	
	(3)		unning trees in K_6 is		4	
		(a) 6	(b) 6^2	(c) 6^3	(d) 6^4	
	(4)		network $N = (V, A)$		(1)	
	755		(b) $f(V, \{s\})$		(d) none of these	
	(5)	Let A be a matrix (a) -18	with spectrum {-3, (b) 18	$-1, 2, 3, 1$ }. Then de		
	(6)			(c) 2	(d) 6	
	(6)	(a) 6	the non-zero eiger (b) 4	(c) 2	(d) 3	
	(7)	The Ramsey numb	* * *			
		(a) 3	(b) < 6		(d) 6	
	(8)	If $E = \{1, 2, 3\}$ with	th base $B_{\rm M} = \{\{1,2\}$	$\{1,3\}\}$, then $C_{\rm M} =$		
		(a) {{2,3}}	(b) {{2}}}	(c) $\{\{1\}, \{2,3\}\}$	(d) {{2}, {1,2,3}}	
2.		Attempt any SEVEN: [14]				
	(a)	Define graceful labelling and give one graceful labelling of P ₇ .				
	(b)	Find Pruffer code of all possible trees for which the degree sequence is				
	(0)	(1, 2, 1, 4, 1, 1).				
	(c)	Prove or disprove: In a weighted connected graph, there is a unique shortest spanning tree.				
	(d)	Define u-v vertex separating set and give one example of it.				
	(e)	Let A be a matrix with spectrum $\{2, 1, -1, -3\}$. Then find spectrum of A^2 .				
	(f)	Prove: If G is k regular graph, then k is an eigen value of G.				
	(g)	Prove or disprove: $R(4, 3) = 8$.				
	(h)	State Pigeonhole Principle.				
	(i)		and $e \in E$, $r(X + e)$	< r(X) + 1		
	` /	L VA 21 CA D C		(/ -) / 1 /		_ ^
					C.P. T.	(, 0

- 3. (a) Prove: For a set $S \subseteq N$ of size n there are n^{n-2} trees with vertex set S. [6]
 - (b) Find $\tau(G)$ using Matrix-Tree theorem, for $G = C_5$. [6]

OR

- (b) Prove: If $e \in E(G)$ is not a loop, then $\tau(G) = \tau(G e) + \tau(G \cdot e)$. [6]
- 4. (a) Using Kruskal's algorithm, find a shortest spanning tree for the graph (A): [6]

(b) Define a flow, increment of a walk W in a network and give one example of it in a network. [6]

OR

- (b) Let f be a flow in a network N = (V, A) with value d. Prove that, if $A(X, \overline{X})$ is a cut in N, then $d = f(X, \overline{X}) f(\overline{X}, X)$.
- 5. (a) Prove: For any graph G, $\chi(G) \le 1 + \lambda_{\max}(G)$. [6]
 - (b) (i) Prove: If G is a bipartite graph, then non-zero eigen values of G occur in pair $(\lambda, -\lambda)$.
 - (ii) Find $sp(K_{1,3})$.

OR

- (i) Prove: For any graph G, λ_{max}(G) ≤ Δ(G).
 (ii) Prove: If J is a linear combination of powers of A(G), then G is regular.
- 6. (a) Prove: $R(p, q) \le R(p-1, q) + R(p, q-1), \forall p, q > 2.$ [6]
 - (b) Prove (ANY ONE): In a hereditary system,
 (i) Uniformity property (U) ⇒ Sub modularity property (R).
 - (ii) Augmentation property (I) ⇒ Uniformity property (U).

