No. of printed pages: 2 Seat No. _

SARDAR PATEL UNIVERSITY

M.Sc. (Semester - III) Examination (NC)

Thursday April 19, 2018

Time: 02:00 p.m. to 05:00 p.m.

	Subject: Mathematics Course No. PS03EMTH13 (Operations Research) Total Marks	· 40
	All the questions are to be answered in the answer book only. Pigures to the right indicate marks of the respective question.	
Q-1 Che	ose the most appropriate answer from the options given.	8)
1	method cannot be used to solve an LPP with more than 4 decision variables.	
() Graphical (b) Big M (c) Simplex (d) Two-phase	
2. 1	l the constraints of an LPP when expressed in the standard form are of type.	
($) \leqslant (b) \geqslant (c) \neq (d) =$	
3. I	graphical method, the feasible region is always	
) a triangle (b) open (c) convex (d) an empty set	
4. 4	basic feasible solution is called if all the basic variables are non-zero.	
) non-basic (b) infeasible (c) non-degenerate (d) degenerate assignment problem can be solved by method.	
) Simplex (b) Hungarian (c) Big M (d) Graphical	
	a transportation problem if the supply exceeds the demand, then	
) dummy source is added (c) a demand is reduced	
() a source is reduced (d) dummy destination is added	
7.	an assignment problem the number of tasks number of men.	
	(c) = (d) none of these	
8	one of the constraints is non-linear, then the problem is	
	.) LPP (b) NLPP (c) Partial LPP (d) Partial NLPP	
Q-2 At	empt Any Seven of the following:	14)
(a)	What is the use of a slack variable in LPP?	
(b)	What is meant by an initial basic feasible solution?	
(c)	Express the following LPP in the standard form: Maximize $z = 3x_1 - 5x_2$ subject to $x_1 + 2x_2 \le 3$, $2x_1 + x_2 \le 4$, and $x_1, x_2 \ge 0$.	
(d	In an LPP, show that the set of feasible solutions is a convex set.	
	In an LPP how an equality constraint is dealt with?	
(f	What are the constraints in an assignment problem?	
(g	Explain the term "dummy source" in a transportation problem.	
	What is the use of <i>uv</i> -method?	
•	In an NLPP how Lagrangian is defined?	
Q-3 (a	State and prove the fundamental theorem of linear programming.	(06)
(b		(06)

how many kilograms of each fertilizer should be used such that the cost is minimum?

(06)(b) Solve the following LPP by the simplex method: Max $z = 4x_1 + 10x_2$ subject to $2x_1 + x_2 \le 50$, $2x_1 + 3x_2 \le 90$, $2x_1 + 5x_2 \le 100$, and $x_1, x_2 \ge 0$.

Q-4 (a) Describe the Two-phase method for solving an LPP.

(06)(06)

(b) Solve the following LPP by Big M method: $\operatorname{Max} z = 6x_1 + 4x_2$ subject to $2x_1 + 3x_2 \le 30$, $3x_1 + 2x_2 \le 24$, $x_1 + x_2 \ge 3$, and $x_1, x_2 \ge 0$. OR.

(06)

- (b) Obtain the dual of the following problem: $\operatorname{Max} z = 5x_1 + 6x_2$ subject to $x_1 + 2x_2 = 5$, $-x_1 + 5x_2 \ge 3$, $4x_1 + 7x_2 \le 9$, and x_1 unrestricted, $x_2 \ge 0$.
- Q-5 (a) State various methods to obtain initial basic feasible solution to a transportation problem (06)and describe any one of them.
 - (06)(b) Obtain the initial basic feasible solution of the following transportation problem by Northwest-corner method.

	D	E	F	G	Availability
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Requirement	200	225	275	250	

OR

(b) Solve the following assignment problem by Hungarian method.

(06)

Men	Jobs				
141611	E	F	G	$_{ m H}$	
A	18	26	17	11	
В	13	28	14	26	
C	38	19	18	15	
D	19	26	24	10	

- Q-6 (a) Obtain the bordered Hessian matrix for the objective function (06) $z=2x_1+3x_2-(x_1^2+x_2^2+x_3^2)$, the constraints are $x_1+x_2\leq 1,\ 2x_1+3x_2\leq 6$ and
 - (b) What is meant by bordered Hessian matrix? Explain its use. (06)

(b) Obtain the conditions for Max $z = x_1^2 + 3x_2^2 + 5x_3^3$ subject to (06) $x_1 + 2x_2 + 3x_3 = 2$, $x_1 + 2x_2 + x_3 = 5$, and $x_1, x_2, x_3 \ge 0$.