				\supset \subseteq	
·	SEAT No				
•.	[23]		No of printed pages: 2		
	Sardar Patel				
	M.Sc. (Sem-III), PS03EMTH11, M Tuesday, 24 th April, 2018;				
		-	Maximum Marks: 70	•	
Vote:	(i) Notations and terminologies are stan	dard; (ii) Figures to	the right indicate marks.		
Q.1	Answer the following.		•	[8]	
1.	Let (Ω, \mathcal{A}, P) be probability space and	$\{A_i\} \subset \mathcal{A}, A = \bigcup_{i=1}^{\infty}$	A_i . Then $P(A)$ is	. ,	
٠	$(A) < \sum_{i=1}^{\infty} A_i \qquad (B) \le \sum_{i=1}^{\infty} A_i$	$(C) \geq \sum_{i=1}^{\infty} A_i$	$(D) = \sum_{i=1}^{\infty} A_i$	•	
2.	Let F be a distribution function of r.v.	X. Then for any a ,	$b \in \mathbb{R}$ with $a > b$,		
	$P(b < X \le a)$ is	/C'	(m)	,	
	(A) $F(b) - F(a)$ (B) $F(a) - F(b)$	(C) $a-b$	(D) $b-a$		
ა.	Which is not true from the following?	nonmon oo in distuibad	Lt		
	(A) convergence in probability ⇒ con-				
	(B) almost sure convergence \Rightarrow convergence in probability (C) convergence in distribution \Rightarrow convergence in probability				
	(D) at least one of (A) , (B) , (C) is true	<u> </u>			
1	If $X_n \xrightarrow{L} X$, then F_X			•	
ᠽ,		(B) is continuous h	out not differentiable		
	(C) need not be continuous	(D) none of (A),(B			
5.	If $\phi(u)$ is characteristic function of rand				
	$(A) \phi(-u) > \phi(0)$	(B) $\phi(-u) > \dot{\overline{\phi}}(u)$	•		
	$(C) \phi(-u) = \overline{\phi}(u)$	(D) none of (A),(B),(C) is true		
6.	If $\varphi(u)$ is characteristic function of rando			٠	
	of $1+2X$ is	•	•		
	(A) $e^{2iu}\varphi(u)$ (B) $e^{-2iu}\varphi(u)$		(D) $e^{-iu}\varphi(2u)$		
.7. ·	The pdf of standard normal random var			,	
		(B) even function			
0	(C) neither even nor odd	(D) none of these			
8.	Let F be a distribution function and h		aracteristic function. For		
any $u > 0$, $\exists K > 0 \ni \int_0^u [h(0) - Re(h(v))] dv$					
	$(A) \ge \frac{K}{u} \int_{ x \ge \frac{1}{u}} dF(x)$	$(B) \ge \frac{u}{K} \int_{ x \ge \frac{1}{u}} dF($	(x)		
	$(C) < \frac{u}{K} \int_{ x \ge \frac{1}{u}} dF(x)$	(D) none of these	•		

Q.2 Attempt any seven:

[14]

- (a) Define probability measure.
- (b) If P(A) = 0.25 and P(B) = 0.8 then show that $0.25 \ge P(A \cap B) \ge 0.05$.
- (c) Let $\{X_n\}$ be a sequence of random variables with $E(X_n) = 2$ and $Var(X_n) = \frac{1}{n}$, $\forall n$. Does X_n converge in probability? Justify.
- (d) Define distribution function.
- (e) Define weak convergence.
- (f) What is characteristic function of constant r.v.?
- (g) State Inversion theorem for characteristic function.
- (h) State Weak Law of Large Numbers.
- (i) State Levy's theorem.

W.0		
(a)	Show that the distribution function, F_X of r.v. X is non-decreasing, right continuous, $F_X(\infty) = 1$ and $F_X(-\infty) = 0$.	[6]
(b)	Let $\Omega = \{HH, HT, TH, TT\}, \mathcal{A} = \{\phi, \Omega, TT, HH, \{TT, HH\}, \{HT, TH\}, \{HH, HT, TH\}, \{TT, HT, TH\}\}$ and $X : \Omega \to \mathbb{R}$ defined as the number of H appears. Is X a r.v?	[6
	OR	
(b)	Show that $X_n \xrightarrow{P} X$ if $X_n \xrightarrow{a.s} X$. Does the converse true? Justify.	,
Q.4		
(a)	State and prove Jordan Decomposition Theorem.	[6
(b)	If $X_n \xrightarrow{P} X$ then show that $X_n \xrightarrow{L} X$.	[6
	OR	
(b)	Prove or disprove: $X_n \xrightarrow{L} X$ and $Y_n \xrightarrow{L} Y \Rightarrow X_n + Y_n \xrightarrow{L} X + Y$.	
Q.5		
	Prove that every characteristic function is continuous on \mathbb{R} and $ \phi(u) \leq \phi(0)$. State and prove weak compactness theorem.	[6 [6
	OR	ľ
(b)	Let f be a pdf of r.v. X and f is even function. Then show that the characteristic function of X is real valued.	
Q.6		
(a)	State Chebychev's inequality and hence prove Weak Law of Large Numbers. State and prove Central Limit Theorem.	[6 [6
/	OR	l"
(b)	State and prove Kolmogorav's inequality.	

* * * * *