Seat No.		ı	No. of printed pages: 2	
M.Sc. (Mather Sate	R PATEL UN matics) Semester urday, 21 st April EMTH08, Group	- III Examinat , <mark>2</mark> 018	ion(NC)	
Time: 02:00 p.m. to 05:00 p.m.		N	Aaximum marks: 70	
Note: Figures to the right indicate for wherever applicable.	ull marks of the resp	ective questions	. Assume standard notations	3
Q-1 Write the question number and	appropriate option	number only	or each question.	[8]
(a) Let G be a finite group and a (i) $o(G) + o(a)$ (ii) $o(G) + o(a)$	$\in G$ For which of th	e following n , , α		
(b) The orbit of 3 in (1,4,3,2)(3, (i) {3,4,1,2} (ii) {1	$,2,3,4,5\}$ (iii)	$\{1, 4, 2\}$	(iv) {5}	
(c) The number of conjugate class (i) 1 (ii) 2	(iii)	3	(iv) 6	
(d) A group of order need (i) 7 (ii) 12	(iii)		(iv) 35	
(e) Let G be a group such that 7 be	o(G) . Then the m	imper of 1-pytow	Subgroups in G commer.	
(i) 1 (ii) 8	(iii)	10	(iv) 15	
	$_2 imes \mathbb{Z}_2$ (iii)		(iv) $\mathbb{Z}_2 \times \mathbb{Z}_3$	
(g) The number of non-isomorph (i) 2 (ii) 4	nic abelian groups of (iii)	order 16 is5	(iv) 16	
(h) The invariants of the group (i) 2 (ii) 1	/\	2,2	(iv) 2, 1, 1	[m 4]
Q-2 Attempt Any Seven of the fo	ements in S_5 that ${ m d}$	o not commute.		[14]
(b) Show that A_n is a subground(c) Show that in a group, the(d) Let G be an abelian groundan automorphism.	relation of being "co	onjugate of" is an electric defined by $T(x)$	equivalence relation. $(x) = x^{-1}. \text{ Show that } T \text{ is}$	
(c) State second part of Sylov	v's theorem.	•	•	
(f) Show that a group of orde		ole.	•	
(g) Define external direct pro				
(h) Define invariants of a finit				
(i) Determine the number of	non-isomorphic abe	lian groups of or	der 216.	
			CP.T.)~)

Q-3 (j) Let H, K be two subgroups of a finite group G. Prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$. [6] (k) (i) For a group G and $a \in G$, show that normalizer of a in G, N(a) is a subgroup of G. [2] [4] (ii) Show that every cycle in S_n can be written as a product of transpositions. [6] (k) State and prove Cayley's theorem. Q-4 (1) Let G be a group of order p^n for some prime p and some $n \in \mathbb{N}$. Show that $Z(G) \neq \{e\}$ [6] and deduce that every group of order p^2 is abelian. (m) State and prove. Cauchy's theorem (assume that the theorem holds in the case of finite [6] abelian groups). OR (m) Define inner automorphism of a group G and prove that the set of all inner automor-[6] phisms is a subgroup of Aut(G). Q-5 (n) State and prove Sylow's theorem. [6] (o) Prove that a group of order 225 is abelian. [6] OR (o) For a fixed prime p, let n(k) denote the highest power of prime p which divides $(p^k)!$, [6] Show that $n(k) = 1 + p + \dots + p^{k-1}$. Q-6 (p) Let G be a group. Suppose that G is the internal direct product of $N_1, N_2 \ldots, N_n$ and [6] let $T = N_1 \times N_2 \times \cdots \times N_n$. Show that G is isomorphic to T. (q) Let G be a group and N_1, N_2, \ldots, N_n be normal subgroups of G such that G is the [6] internal direct product of N_1, N_2, \ldots, N_n . Show that $N_i \cap N_j = \{e\}$ for $i \neq j$. Also if $a \in N_i$, $b \in N_j$ then prove that ab = ba. OR (q) For an abelian group G and an integer s, let G(s) be the subgroup $\{x \in G \mid x^s = e\}$. [6] If G and G' are isomorphic, then prove that G(s) and G'(s) are isomorphic for every integer s.