Seat No.:		No. o	of printed pages: 2	
[79]	SARDAR PATEL M.Sc. (Mathematics) Semo Monday, 16 th A PS03EMTH02, Ba	ester - III Examinatio April, 2018	on	
Time: 02:00	p.m. to 05:00 p.m.		num marks: 70	
	e standard notations wherever app n algebra.		mentioned \mathcal{A} is a un	ital
Q-1 Write the	e question number and appropriate		for each question.	[8]
(a) In	_, the spectrum of an element nee	ed not be compact.		
* *	[0,1] (ii) $C[0,1]$		(iv) $A(\mathbb{D})$	
	$[0, 1]$ defined by $f(x) = _{}, (x \in$, , , ,	
	(ii) x^2		(iv) $\cos x$	
(c) $\varphi: A(\mathbb{I}$	$\mathbb{D}) \to \mathbb{C}$ defined by $\varphi(f) = f^*(i)$, ($f \in A(\mathbb{D})$ is		
(i) mu	altiplicative and linear	(iii) multiplicative but 1	not linear	
(ii) line	ear but not multiplicative	(iv) neither multiplicati	ve nor linear	
	ary of G is			
	en (ii) nonempty		(iv) finite	
	and space of $C[2,3]$ is homeomorphical.		(;) W1	
		(iii) R	(iv) ℕ	
	al radius is isometry for (ii) $C^1[0,1]$	(iii) $M_2(\mathbb{C})$	(iv) ℓ^1	
	is a C^* -algebra.	(111) 1112(11)	(11)	
	(ii) $A(\mathbb{D})$	(iii) $C^1[0,1]$	(iv) €	
	um of element of a C^* -algeb		` '	
	fadjoint (ii) normal		(iv) unitary	
D-2 Attempt	Any Seven of the following:			[14]
	ne and give an example of a norme	ed algebra		[
(b) Give	an example of two elements of a l	9	t xy < x y .	
Verify	y your claim.			
(c) For t	he identity e of \mathcal{A} , prove that $ e $	≥ 1 .	•	
(d) Prove	e that multiplication on a Banach	algebra is jointly continu	ious.	
(e) Find	the spectrum of $(1,2,3) \in \mathbb{C}^3$.		,	
(f) Defin	e the $radical$ of a Banach algebra.			
(g) Defin	ne and give an example of a compl	ex homomorphism of a H	Banach algebra.	
(h) Show	that $\mathbb{C} imes \{0\}$ is a maximal ideal	of \mathbb{C}^2 .		
	ne involution on $A(\mathbb{D})$ and show th		elfadjoint.	
	• •	, ,	•	

[6] Q-3 (i) Show that C[0,1] is complete with the supnorm. [6] (k) Show that the map $x \in G \mapsto x^{-1} \in G$ is a homeomorphism. OR[6] (k) Show that boundary of S is subset of Z. [6] Q-4 (1) For $x \in A$, define spectrum of x, obtain resolvent equation and using that show that $sp_{\mathcal{A}}(x)$ is nonempty. [6] (m) Show that complex homomorphism on a Banach algebra is continuous. OR (m) Let \mathcal{A} be a unital Banach Algebra and $x \in \mathcal{A}$. Show that $r(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}}$. [6] Q-5 (n) Show that the set of all nonzero complex homomorphisms on \mathcal{A} and the set of all [6] maximal ideals of A are in one one correspondence. (o) Characterize closed ideals of C[0,1]. |6|OR (o) Describe the topology of the Gel'fand space of a commutative unital Banach [6] algebra. Q-6 (p) Define C^* -algebra and for a compact T_2 -space X, show that C(X) is a C^* -algebra. [6] (q) State and prove Banach-Stone's theorem. |6|(q) For a normal element x of a C^* -algebra, sow that $||x^2|| = ||x||^2$. [6]