No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination

Date: 19-4-2018

Time: 2.00 To 5.00 p.m.

Subject: MATHEMATICS

Paper No. PS03EMTH01 - (Functional Analysis II)

Total Marks: 70

Note: Throughout the paper, X and Y denote nlspaces.

Choose the correct option for each question: 1.

[8]

- (1) If $x \in K^n$, then which of the following is true?

 - (a) $||x||_1 \le ||x||_2$ (b) $||x||_1 \le ||x||_{\infty}$ (c) $||x||_1 = ||x||_{\infty}$ (d) $||x||_2 \le ||x||_1$

- Every linear functional on X is continuous, if X =(2)
- (b) C[0, 1]

(d) none of these

- Let X & Y be nlspaces. Which of the following need not be a Banach space?
 - (a) BL(X, K)
- (b) BL(X,Y)
- (c) BL(X',Y)
- (d) none of these
- A map F: $(C^{1}[0,1], ||..||_{\infty}) \to (C[0,1], ||..||_{\infty})$ defined by F(x) = x' is
 - (a) closed but not continuous
- (c) closed and continuous
- (b) continuous but not closed
- (d) none of these
- (5) Let $A \in BL(X)$. Which of the following is true?
 - (a) $\sigma(A) \subset \sigma_e(A)$
- (b) $\sigma(A) \subset \sigma_a(A)$
- (c) $\sigma_a(A) \subset \sigma_e(A)$
- (d) $\sigma_e(A) \subset \sigma(A)$
- (6) For $x \in X$, let $j_x: X' \to K$ be defined by $j_x(f) = f(x)$. Then $||j_x|| =$
 - (a) 1
- (b) ||f||
- (c) ||x||
- (d) none of these

- (7) Let $F \in BL(X,Y)$. Then
 - (a) ||F|| < ||F'||
- (b) ||F|| = ||F'||
- (c) ||F|| > ||F'||
- (d) none of these
- In which of the following nlsaces, weak convergence and norm convergence are same?
 - (a) l^I
- (b) l^2
- (c) l^p , p > 2
- (d) none of these

2. Attempt any SEVEN: [14]

- (a) Let $E_1, E_2 \subset X$ and E_1 be open in X. Show that $E_1 + E_2$ is open in X.
- (b) State Holder's inequality.
- (c) If X is an infinite dimensional nls, then show that there is linear map from X to K which is not continuous.
- Show that \mathbb{R}^2 with $||(x_1, x_2)||_1 = |x_1| + |x_2|$, is not strictly convex. (d)
- If a map F: $X \rightarrow Y$ is bijective and closed, then show that F^{-1} is closed. (e)
- (f) Let X be a Banach space. If a series $\sum_{n} x_n$ of elements of X is absolutely summable, then show that it is summable in X.
- (g) Define $\sigma_e(A)$, $\sigma_a(A)$ and $\sigma(A)$.
- Prove: If $F \in BL(X,Y)$ and $G \in BL(Y,Z)$, then (GF)' = F'G'. (h)
- Show that if $\{x_n\}$ is a sequence in X and if $x_n \stackrel{w}{\to} x \& x_n \stackrel{w}{\to} y$, then x = y. (i)

- 3. (a) For $x = (x(1), x(2), ... x(n)) \in K^n$, show that $||x||_p = (\sum_{i=1}^n |x(i)|^p)^{1/p}$ [6] defines a norm on K^n , (1 .
 - (b) Let Y be a closed subspace of a nls X and Y \neq X. Prove that, for 0 < r < 1, there exists $x_r \in X$ such that $||x_r|| = 1$ and $r < dist(x_r, Y) \le 1$.

OR

- (b) Let $F \in BL(X,Y)$. Define a map $\widetilde{F} : X/Z(F) \to Y$ by $\widetilde{F}(x + Z(F)) = F(x)$. Show [6] that \widetilde{F} is linear and continuous.
- 4. (a) State and prove Hahn-Banach separation theorem. [6]
 - (b) Prove: A Banach space cannot have a denumerable basis. [6]

OR

- (b) Prove: A subset $E \subset X$ is bounded if and only if f(E) is bounded in K, for every $f \in X'$.
- 5. (a) Prove: If X and Y are Banach spaces and F: X → Y is a closed linear map, then F is continuous. [6]
 - (b) Let Z be a closed subspace of a nls X. Show that the quotient map Q from X to [6] X/Z is continuous and open.

OR

- (b) Prove: $k \in \sigma_a(A)$ if and only if there is a sequence $\{x_n\}$ in X such that $\|x_n\| = 1$ [6] for all n and $\|Ax_n kx_n\| \to 0$ as $n \to \infty$. $(A \in BL(X))$
- 6. (a) Let X be a finite dimensional space with $\dim X = m$ and let $\{a_1, a_2, \dots, a_m\}$ be a basis for X. Show that $\dim X' = m$.
 - (b) Define weak and weak* convergence in X'. Show that if $\{x'_n\}$ is a sequence in X' and $x' \in X'$, then $x'_n \xrightarrow{\parallel \cdot \parallel} x' \Rightarrow x'_n \xrightarrow{w} x' \Rightarrow x'_n \xrightarrow{w^*} x'$.

OR

(b) Let X be a separable nls. Prove that every bounded sequence in X' has a weak* [6] convergent subsequence.

____X