Cont No.	•	No. of printed pages: 2	
Seat No. SARDAR PATEL M.Sc. Mathematics Thursday, 12 th PS03CMTH02, Mathem Time: 02:00 p.m. to 05:00 p.m. Note: 1. Assume standard notations wherever 2. Figures to the right indicate full mark	i, Semester - III April, 2018 natical Methods applicable. as of the respective	- I Maximum marks: 70 question.	
 Q-1 Choose the most appropriate option for each of the Fourier series of is (a) 0 (b) ½ 2. The Fourier series of a 2π periodic function 	of the following quot 2π -periodic function (c) 1	tion $f(x) = 1, -\pi < x \le \pi$ (d) 2	[8]
2. The Fourier series of a 2π periodic function if $f(x)$ is (a) $\frac{\sin x}{x}$ (b) $\chi_{\mathbb{Q}}$ 3. $F[9e^{-\frac{x^2}{2}}](s) =$ (a) $\frac{1}{9}e^{-\frac{s^2}{2}}$ (b) $3e^{-\frac{s^2}{2}}$	(c) $\sin(\frac{1}{x})$ (c) $9e^{-\frac{x^2}{2}}$	(d) e^{x^2} (d) $81e^{-\frac{x^2}{2}}$	÷
 4. If f is an odd integrable function, then F[f(a) -F_s[f]] 5. By convolution theorem, L[f * g] = (a) L[f] * L[g] (b) L[f]L[g] 	(c) $-i F_s[j]$	(d) $-F_c[f]$ (d) none of these	
$G I^{-1} \left[\frac{1}{1} \right] (t) = $	(c) $e^{-t} \frac{t^{n-1}}{(n-1)!}$		
8. The Z-transform, $Z[(-1)^n](z) = \underline{\hspace{1cm}}$ (a) $\frac{z}{z+1}$ (b) $\frac{z}{z-1}$ Q-2 Attempt Any Seven of the following:	(c) $\frac{1}{z+1}$ of Fourier series.	(d) $\frac{1}{z-1}$	[14]

- (b) Write the formula for Fourier coefficients of the Fourier series of a 2L-periodic function $f \in L^1[-L, L].$
- (c) For a 2π -periodic function f, state the relation between complex Fourier coefficients c_n of f and Fourier coefficients a_n, b_n of f.
- (d) State and prove Parseval's identity for Fourier series.
- (e) Let u(x,t) be a function of two variables and let u(x,t) and $u_x(x,t)$ both tend to 0 as $|x| \to \infty$. Show that $F_c[u_x](s) = -\sqrt{\frac{2}{\pi}}u(0,t) + sF_s[u](s)$.
- (f) In usual notations, show that $L[t^n f(t)](s) = (-1)^n \frac{d^n}{ds^n} L[f](s)$.
- (g) Define Heaviside function and compute its Laplace transform.
- (h) Compute the Z-transform of $(\cos(\alpha n))_{n\geq 0}$, where $\alpha\in\mathbb{R}$.
- (i) Find $H_2(x)$ and hence evaluate $H_2(0)$, notations being usual.

CP. T. O.)

- Q-3 (a) Compute the half range Fourier sine series of f(x) = πx x², 0 < x < π. Use Parseval's identity to evaluate the sum of the series ∑ 1/(2π 1)⁶.
 (b) Compute the Fourier series of a 2π-periodic function f(x) = x sin x, -π ≤ x ≤ π. Hence evaluate ∑ 1/(n² 1).
 OR
 (b) Applying Fourier series methods, solve uxx + uyy = 0, 0 < x < a, 0 < y < b subject to u(0, y) = u(a, y) = 0 for all y, u(x, b) = 0 for all x, and u(x, 0) = f(x) for all x. (You may assume both the functions equal to -λ² at the time of separation of variables).
 Q-4 (a) For a > 0, compute the Fourier transform of e^{-ax²}.
 (b) Using Fourier integral representation of f, evaluate the integral ∫ 1/0 (x cos x sin x)/(x cos x sin x)/(
 - (b) Solve $u_{xx} + u_{yy} = 0$ ($x \in \mathbb{R}$, y > 0) subject to the conditions u(x, 0) = f(x) ($x \in \mathbb{R}$), u is bounded as $y \to \infty$, both u and $\frac{\partial u}{\partial x} \to 0$ as $|x| \to \infty$ using Fourier transform methods. [6]
- Q-5 (a) Using methods of Laplace transform, solve $u_{tt} = u_{xx}$, 0 < x < 1, t > 0 subject to u(0,t) = 0 = u(1,t) for all t, $u(x,0) = \sin \pi x$ and $u_t(x,0) = -\sin \pi x$, for all x.
 - (b) Compute the inverse Laplace transform of the functions $\frac{1}{s(s^2+4)}$ and $\frac{1}{(s+a)(s+b)}$. [6]

OR

- (b) Applying Laplace transform, solve $y'' + 9y = \cos 2t$ subject to y(0) = 1 = y'(0). [6]
- Q-6 (a) Find the Green's function for y''(x) = f(x) subject to y(0) = y(1) = 0 and hence find the solution of the above equation when $f(x) = x^2$.
 - (b) State Gram-Schmidt orthonormalization theorem. Orthonormalize the set $\{1, x, x^2\}$ over the interval [-1, 1].

OR

(b) i. Show that Z-transform is linear.
 ii. Using Z-transform methods, find the 100th term of the Fibonacci sequence.

