SEAT No

No of printed pages: 2

[125/A-59]

Sardar Patel University

Mathematics

M.Sc. Semester III

Tuesday, 11 April 2017

2.00 p.m. to 5.00 p.m.

PS03CMTH01 - Real Analysis II

[8]

				Maximum Marks: 70
	Let $\mathbb B$ is the colle	ect option for each of the ction of all Borel subsets hich of the following is	s of \mathbb{R} , and let \mathscr{M} be th	ne collection of all measurable
	(a) $\mathcal{M} \subset \mathbb{B}$	(b) $\mathcal{M} \supset \mathbb{B}$	(c) $\mathcal{M} = \mathbb{B}$	(d) none of these
(2)	The Lebesgue m	easure on $\mathbb R$ fails to be	measure.	
	(a) finite	(b) σ -finite	(c) complete	(d) saturated
(3)	If δ_0 is the point	mass measure at 0, the	en $\delta_0(\mathbb{Q}\cap[-1,1])=\ldots$	
	(a) 0	(b) 1	(c) 2	(d) ∞
(4)	Let ν be a signed that ν is a measure		neasure on (X, \mathscr{A}) . W	which of the following implies
•	(a) $\nu \ll \mu$	(b) $\nu \perp \mu$	(c) $\mu = 0$	(d) $\nu(E) \geq 0, E \in \mathscr{A}$
(5)	Let $f, g \in L^2(\mu)$.	Then $f + g$ is in		
	(a) $L^{1}(\mu)$	(b) $L^2(\mu)$	(c) $L^{\infty}(\mu)$	(d) none of these
(6)	(a) If f is boun(b) If f is essen(c) f is bounde	e continuous. Which of ded, then f is essentiall tially bounded, then f is d if and only if f is essentially	y bounded is bounded	rue?
(7)	(d) None of the If μ^* is an outer true?		X and $E \cap F = \emptyset$, t	hen which of the following is
		$= \mu^*(E) + \mu^*(F)$ $\leq \mu^*(E) + \mu^*(F)$	(c) $\mu^*(E \cup F) \ge$ (d) $\mu^*(E \cup F) <$	$\mu^*(E) + \mu^*(F) \mu^*(E) + \mu^*(F)$
(8)	Let \mathscr{A}_1 and \mathscr{A}_2 b	be algebras on X . Which	h of the following is a	n algebra on X ?
	(a) $\mathscr{A}_1 \cap \mathscr{A}_2$	(b) $\mathscr{A}_1 \cup \mathscr{A}_2$	(c) $\mathscr{A}_1 - \mathscr{A}_2$	(d) none of these
Q.2	Attempt any Se	ven.		

[14]

- (a) Show that finite measure space is σ -finite measure space.
- (b) State Lebesgue Dominated Convergence Theorem.
- (c) Show that countable union of positive sets is a positive set.

- (d) If ν_1 , ν_2 and μ are σ -finite measures on a measurable space (X, \mathscr{A}) and both ν_1 and ν_2 are absolutely continuous with respect to μ , then show that $\left[\frac{d(\nu_1+\nu_2)}{d\mu}\right] = \left[\frac{d\nu_1}{d\mu}\right] + \left[\frac{d\nu_2}{d\mu}\right]$. (e) If f is essentially bounded on a measure space (X, \mathcal{A}, μ) , then show that $|f(t)| \leq ||f||_{\infty}$ a.e.
- (f) If (X, \mathcal{A}, μ) is a finite measure space, then show that $L^{\infty}(\mu) \subset L^{1}(\mu)$.
- (g) State Riesz Representation Theorem.
- (h) Let μ^* be an outer measure on X. If $E \subset X$ with $\mu^*(E) = 0$, then show that E is measurable.
- (i) If F is a cumulative distribution of a Baire measure μ , then show that F is bounded and increasing.

- (a) Define integral of a nonnegative measurable simple function. If s and t be nonnegative measurable simple functions on a measure space (X, \mathscr{A}, μ) , then show that $\int_X (s+t)d\mu =$ $\int_X s d\mu + \int_X t d\mu.$
- (b) Let f be a measurable function on a measure space (X, \mathcal{A}, μ) . Show that $\int_E f d\mu = 0$ for all $E \in \mathscr{A}$ if and only if f = 0 a.e. $[\mu]$ on X.

- (b) Let (X, \mathcal{A}, μ) be a measure space, and let $\{E_n\}$ be a sequence of pairwise disjoint measurable subsets of X. If f is integrable over X, then show that $\int_X f d\mu = \sum_n \int_{E_n} f d\mu$.
- Q.4
- (c) Let ν be a signed measure on a measurable space (X, \mathcal{A}) . If $E \in \mathcal{A}$ and $0 < \nu(E) < \infty$, then show that E contains a positive set A with $\nu(A) > 0$.
- (d) If ν and μ are σ -finite measures on a measurable space (X, \mathscr{A}) , then show that there exists a pair of measures ν_0 and ν_1 such that $\nu_0 \perp \mu$, $\nu_1 \ll \mu$ and $\nu = \nu_1 + \nu_2$.

- (d) If ν_1 and ν_2 are finite signed measures on a measurable space (X, \mathscr{A}) , $\alpha, \beta \in \mathbb{R}$ and μ is a measure on (X, \mathscr{A}) , then show that $(1) |\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$ and (2) If $\nu_1 \perp \mu$ and $\nu_2 \perp \mu$, then $(\alpha \nu_1 + \beta \nu_2) \perp \mu$.
- (e) Show that $(L^p(\mu), \|\cdot\|_p)$ is complete for $1 \le p < \infty$.
- (f) Let $1 and <math>q \in \mathbb{R}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(\mu)$ and $g \in L^q(\mu)$, then show that $fg \in L^1(\mu)$.

OR

- (f) Let $1 \le p < \infty$. Let $f \in L^p(\mu)$, and let $\epsilon > 0$. Show that there is a measurable simple function φ vanishing outside a set of finite measure such that $||f - \varphi||_p < \epsilon$.
- (g) Let μ^* be an outer measure on X. Let $\mathbb B$ be the σ algebra of measurable subsets of X. Define $\overline{\mu}:\mathbb{B}\to[0,\infty]$ by $\overline{\mu}(E)=\mu^*(E)$ for every $E\in\mathbb{B}$. Show that $\overline{\mu}$ is a complete measure on B.
- (h) Let μ be a σ -finite measure on an algebra \mathcal{A} of subsets of X, and let μ^* be the outer measure induced by μ . Show that a subset E of X is (μ^*) - measurable if and only if E can be expressed as a difference E = A - B, where A is an $A_{\sigma\delta}$ - set and $\mu^*(B) = 0$.

(h) Let μ be a measure on an algebra \mathcal{A} of subsets of X, and let μ^* be the outer measure induced by μ . Prove that $\mu^* = \mu$ on \mathcal{A} and every member of \mathcal{A} is measurable.

[122/A65] SARDAR FAIEL OILL. M.Sc. (Mathematics) Semester - III Examination SARDAR PATEL UNIVERSITY Thursday, 13th April, 2017 PS03CMTH02, Mathematical Methods I Maximum marks: 70 Time: 02:00 p.m. to 05:00 p.m. Note: All the questions are to be answered in answer book only. Figures to the right indicate full marks of the respective question. Assume standard notations wherever applicable. Q-1 Choose the most appropriate option for each of the following questions: 1. The set $\{\sin nx : n \in \mathbb{N}\}\$ on the interval $[-\pi, \pi]$ is _____. (c) functions of zero norm (a) orthogonal but not orthonormal (d) trivial (b) orthonormal

2. Let $f(x) = x - x^2$, $-1 \le x < 1$ be 2-periodic. Then the Fourier series of f at x = 1converges to _____. (d) 1

(c) -1(b) 0 (a) -23. If $f \in L^1(\mathbb{R})$ is an odd function, then _____.

(a) $F[f] = iF_s[f]$ (b) $F[f] = -iF_s[f]$ (c) $F[f] = F_c[f]$ (d) $F[f] = -F_c[f]$

4. If F(s) denotes Fourier transform of f(x), then Fourier transform of f(5x) is ______

(d) $5F\left(\frac{s}{\epsilon}\right)$ (b) $\frac{1}{5}F\left(\frac{s}{5}\right)$ (c) $\frac{1}{5}F(5s)$ (a) F(5s)

5. $L[e^{2t}\cosh 3t](t) =$ _____. (a) $\frac{2}{(s-2)^2-9}$ (b) $\frac{3}{(s-2)^2-9}$ (c) $\frac{s-2}{(s-2)^2-9}$ (d) $\frac{s-3}{(s-2)^2-9}$

6. $L^{-1} \left[\frac{L[f](s)}{s} \right] (t) = \underline{\qquad}$

(a) $\int_t^\infty L[f](u)du$ (b) $\int_0^t L[f](u)du$ (c) $\int_t^\infty f(u)du$ (d) $\int_0^t f(u)du$

7. The Z-transform of $(\cos n\pi)_{n\geq 0}$ is _____.

(c) $\frac{1}{z+1}$ (b) $\frac{z}{z-1}$

8. The domain of convergence of Z-transform of $(3^n)_{n\geq 0}$ is _____.

(b) $|z| > \frac{1}{3}$ (c) |z| < 3(a) $|z| < \frac{1}{3}$

Q-2 Attempt Any Seven of the following:

(a) State Dirichlet theorem for Fourier series. (b) Compute the half range Fourier cosine series of $f(x) = \frac{1}{2}$, $0 < x < \pi$.

(c) Compute the Fourier transform of $xe^{-\frac{x^2}{2}}$ provided that $F\left[e^{-\frac{x^2}{2}}\right](s) = e^{-\frac{s^2}{2}}$.

(d) State and prove Parseval's identity for Fourier transform.

(e) Let u(x,t) be a function of two variables such that both u(x,t) and $u_x(x,t)$ tend to 0 as $x\to\infty$, then show that $F_s[u_{xx}](s)=\sqrt{\frac{2}{\pi}}u_x(0,t)-s^2F_s[u](s)$; notation being usual.

(f) In usual notations, show that $L[t^n f(t)](s) = (-1)^n \frac{d^n}{ds^n} L[f](s)$.

(g) Compute the inverse Laplace transform of $\log \left(\frac{s^2+4}{s^2+9}\right)$.

(h) Find $H_2(x)$ and hence evaluate $H_2(1)$; notation being usual.

[14]

[8]

- (i) Compute the Z-transform of $(\sin(\alpha n))_{n\geq 0}$.
- Q-3 (a) Compute the Fourier series of a 2π -period function $f(x) = x + x^2$, $-\pi \le x < \pi$. [6] Hence find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (b) Compute half range Fourier sine series of the function $f(x) = \pi x x^2$, $0 < x < \pi$. [6] Use Parseval's identity to evaluate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$.

OR

- (b) Solve $u_t = c^2 u_{xx}$, $0 \le x \le 100$, t > 0 subject to u(0,t) = u(100,t) = 0, for all t and $u(x,0) = \begin{cases} x & , & 0 \le x \le 50 \\ 100 x & , & 50 \le x \le 100. \end{cases}$ [6]
- Q-4 (a) Compute the Fourier transform of e^{-ax^2} , a > 0. [6]
 - (b) Using Fourier transform methods, solve $u_t = ku_{xx}$, x > 0, t > 0 subject to u(x,0) = 0 for all x > 0, $u_x(0,t) = -a$ for all t > 0, and $u, u_x \to 0$ as $x \to \infty$.

OR

- (b) Let $f, g \in L^1(\mathbb{R})$. Define convolution product of f and g. Show that $f * g \in L^1(\mathbb{R})$ and F[f * g] = F[f]F[g].
- Q-5 (a) Using methods of Laplace transform, solve $u_{tt} = u_{xx}$, 0 < x < 1, t > 0 subject to u(0,t) = u(1,t) = 0 for all t, $u(x,0) = \sin \pi x$ and $u_t(x,0) = -\sin \pi x$ for all x. [6]
 - (b) Compute the inverse Laplace transform of the functions $\frac{s}{(s^2+4)^2}$ and $\frac{1}{(s-1)(s^2+1)}$. [6]

OR

- (b) Use Laplace transform methods to solve $y'' + 6y' + 9y = 6t^2e^{-3t}$ subject to y(0) = 1, [6] y'(0) = 2.
- Q-6 (a) State Gram-Schmidt orthonormalization process and hence orthonormalize the set $\{1, x, x^2\}$ over [-1, 1].
 - (b) i. Find the Green's function for y'' = f(x) subject to y(0) = 0 = y(1) and hence find its solution when $f(x) = x^2$.
 - ii. Show that $H_{n+1}(x) 2xH_n(x) + 2nH_{n-1}(x) = 0$ for all $n \ge 1$. [3]

OB

- (b) i. Find a polynomial of degree 2 so that $\int_{-1}^{1} |\sin x p(x)|^2 dx$ is minimum. [3]
 - ii. Solve the difference equation $y_{n+2} 3y_{n+1} + 2y_n = 0$ subject to $y_0 = 1, y_1 = 2$. [3]

Sardar Patel University

Mathematics

M.Sc. Semester III Monday, 17 April 2017

2.00 p.m. to 5.00 p.m.

PS03EMTH01 - Functional Analysis II

				Maximum Marks: 70			
		ption for each of the fo Which of the following			[8]		
	(a) $\ell^p \subset \ell^q$	(b) $\ell^p \supset \ell^q$	(c) $\ell^p = \ell^q$	(d) none of these			
	 (a) If E is convex, the convex is convex. 	hen \overline{E} is convex. hen $E+x$ is convex fo hen $\overline{E}=\overline{E^0}$	$x \in X$				
(0)	$\alpha = \sup\{\ Tx\ : \ x\ < \alpha$	be normed spaces, and $\langle 1 \rangle$ and $\beta = \sup{\ Tx\ }$	$\ : \ x\ = 1$. Which of	near and continuous. Let f the following is true?			
	(a) $\alpha = \beta$	(b) $\alpha < \beta$	(c) $\alpha > \beta$	(d) none of these			
(4)	The dimension of a h	yperspace in the vector	r space of all $n \times n$ ma	atrices over R is			
	(a) n^2	(b) $\frac{n(n+1)}{2}$	(c) $\frac{n(n-1)}{2}$	(d) $n^2 - 1$			
(5)	Which of the followin	g is not a Banach spac	ce with the sup norm?				
	(a) c_0	(b) $C[0,1]$	(c) $\mathbb{P}[0,1]$	(d) $C_0(\mathbb{R})$			
(6)	Let $D_m(x) = \sum_{k=-m}^m$	e^{ikx} . Then the value ϵ	of $\lim_{n\to\infty} \ D_n\ _1$ is	• • • •			
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) ∞			
(7)	Let $F \in BL(X,Y)$ are	$\operatorname{id} G \in BL(Y, Z)$. Whi	ch of the following is r	not true?			
				$G'(d) \ (G \circ F)' = F' \circ G'$			
(8)	The dual of ℓ^2 is isom	netrically isomorphic to)				
	(a) ℓ^1	(b) c_0	(c) ℓ [∞]	(d) ℓ^2			
(a)(b)(c)(d)(e)(f)	 Q.2 Attempt any Seven. (a) Let Y be a closed subspace of a normed space X. If x and y are in X, then show that x + y + Y ≤ x + Y + y + Y (b) Show that · ₁ and · _∞ are equivalent on Kⁿ. (c) Let X and Y be normed spaces, and let F: X → Y be linear. If F(x) ≤ 2 x for all x ∈ X, then show that F is uniformly continuous. (d) Let f: (ℓ¹, · ₁) → K be f((x(k))) = ∑_{k=1}[∞] x(k). Find the norm of f. (e) Let X be a normed space. Show that a = sup{ f(a) : f ∈ X', f ≤ 1} for all a ∈ X. (f) Let X and Y be normed spaces, and F: X → Y be linear. If F is an open map, then show that F is surjective. 						

- (g) Let P be a projection on a normed space X. If both Z(P) and R(P) are closed in X, then show that P is closed.
- (h) Define weak*- convergence of a sequence. Show that weak limit of a sequence is unique.
- (i) Let X be a normed space, and let $T \in BL(X)$ be invertible. Show that T is bounded below.

- (a) Let (a_n) and (b_n) be sequences in K. Let 1 and <math>q be such that $\frac{1}{p} + \frac{1}{q} = 1$. Show [6] that $\sum_n |a_n b_n| \leq (\sum_n |a_n|^p)^{\frac{1}{p}} (\sum_n |b_n|^q)^{\frac{1}{q}}$. State the result you use. (b) Let X and Y be a normed spaces, and let X be finite dimensional. Show that every linear
- [6] map from X to Y is continuous. Is the same true if X is infinite dimensional? Justify.

(b) Let $T: (\mathbb{K}^n, \|\cdot\|_1) \to (\mathbb{K}^m, \|\cdot\|_1)$ be linear, and let (α_{ij}) be the matrix of T. Find the norm of T. Do the same when we consider \mathbb{K}^n and \mathbb{K}^m with the norm $\|\cdot\|_{\infty}$. [6]

Q.4

(c) State and prove Hahn-Banach Extension Theorem.

[6]

[6]

(d) When is a series $\sum_n x_n$ called summable in a normed space X? When is it called absolutely summable? Let X be a normed space. Show that X is a Banach space if and only if every absolutely summable series of elements of X is summable.

(d) Let X be a normed space. Show that X can be embedded in its second dual. Also, show [6] that if Z and Z' are completions of X, then Z and Z' are isometrically isomorphic.

Q.5

(e) State and prove Closed Graph Theorem.

[6]

(f) Let $\|\cdot\|$ be a complete norm on $L^1[-\pi,\pi]$ such that if a sequence (x_n) in $L^1[-\pi,\pi]$ converges to $x \in L^1[-\pi,\pi]$, then $\widehat{x_n}(j) \to \widehat{x}(j)$ for all $j \in \mathbb{Z}$. Show that $\|\cdot\|$ is equivalent to $\|\cdot\|_1$. State results you use.

OR

[6] (f) Show that the statement of Open Mapping Theorem is not true if either X is not a Banach space or Y is not a Banach space.

- (g) If $1 \le p < \infty$, then show that ℓ^p is separable. Show that ℓ^{∞} is not separable. [6]
- (h) Let X be a normed space, and let $T \in BL(X)$ be of finite rank. Show that $\sigma_e(T) = \sigma_a(T) = \sigma_a(T)$ [6] $\sigma(T)$.

OR

- (h) (\mathfrak{F}) Let $T \in BL(X,Y)$. Show that T is not bounded below if and only if there is a sequence (x_n) in X such that $||x_n|| = 1$ for all n and $||Tx_n|| \to 0$ as $n \to \infty$.
 - (F) Let X be a Banach space, and $T \in BL(X)$. If ||T|| < 1, then show that I T is invertible.

կնիկներինի ~

[62/A-36]

ıŧ

. 1

힐

Sardar Patel University

M.Sc. Semester III Examination

Wednesday, 19^{th} April 2017; 14:00 to 17:00

Subject: Mathematics; Code: PS03EMTH02; Title of Paper: Banach Algebras

ıbject: Mathematic	s; Code: PS03EM	1 Huz; Title of Taper. Ma	eximum Marks: 70	
Q.1 To answer, write (a) In a Banach alge	the correct $f question$ bra ${\cal A}$ with identity $f 1$	number and option i		[8]
(i) =	(ii) >	(iii) ≤	$(iv) \ge$	
(b) is not a Ba	anach algebra.			
(i) $P[0,1]$	(ii) ℓ^{∞}	(iii) $\ell^1(\mathbb{Z}_5)$		
(c) Spectrum of $f \in$	C[0,1], defined by $f($	$(x) = x^2 + 1, (x \in [0, 1]),$	is	
(i) [0 1]	(ii) $[1, 2]$	(iii) {0}	(IV) {1}	
(d) Spectral radius	of $f \in C[0, 7.987]$, def	ined by $f(x) = \sin x$, $(x + \sin x)$	$\in [0, 7.987]$), is	
(i) 1	(ii) -1	(iii) π	(1V) = n	
(e) The Banach alg	ebra with usual	multiplication and norn	n is simple.	
	(ii) $C[0, 1]$	(iii) ℂ ⁷	(iv) $BL(\mathbb{C}^{\mathfrak{o}})$	
(f) For a normal ele	ement x of a C^* -algeb	ora,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(i) $r(x) \leq 1$	(ii) $x^* = x$	(iii) $ x = r(x)$	(iv) $1+x\in G$	
(g) The Gel'fand tr	ansform of is a	n isometry.		
(i) $C^1[0,1]$	(ii) ℓ^1	(iii) ℓ^2	(iv) ℓ^{∞}	
(h) For a/an	element x of a C^* -alg	gebra, the $sp(x)$ is real.	N / 3	
(i) normal	(ii) selfadjoint	(iii) invertible (1	v) singular	[14]
Q.2 Attempt any S (a) Prove that multiple (b) Prove or dispressions.	even. (Start a new ltiplication is continuo ove: The sequence {	formula in the function of f_n , where $f_n(t) = t^n$,	(5 2 [17 377	a
(c) Define spectrus	n of an element of ar	algebra. Find spectrum	of $\begin{bmatrix} 2 & 2 \end{bmatrix} \in M_2(\mathbb{C})$.	
(d) Show that spe(e) Mention one n(f) For an elemen	ctrum of an element \mathbb{C}^3 w	ith usual multiplication. Fra A , prove that $r(x) \leq 1$	5504.	

(g) In usual notations, prove that $\frac{-\sqrt{1-\mu^2}}{\lambda-\mu}=x(\lambda)x(\mu)$. (h) Show that $\{f\in C^1[0,1]:f(0.1)=f'(0.1)=0\}$ is a closed ideal of $C^1[0,1]$ which is not maximal.

(i) Show that $\psi: C[0,1] \to C[1,2]$ defined by $\psi(f)(x) = f(x-1)$, $(f \in C[0,1])$, is an algebra homomorphism. [Contd...]

1

Q.3 (a)	(Start a new page.) Define Banach algebra and show that for a compact T_2 -space X , $(C(X), \ \cdot\ _{\infty})$ is a	[6]
, ,	Banach algebra.	[6]
(b)	In usual notations, prove that $Z \subset S$ and $\mathrm{bd}(S) \subset Z$.	[0]
	OR	r - 2
	Show that the set of all invertible elements of a Banach algebra is open.	[6]
Q.4	(Start a new page.)	[6]
$\begin{pmatrix} c \end{pmatrix}$	Obtain the spectral radius formula in a complex unital Banach algebra. Show that a complex homomorphism on a Banach algebra is automatically continuous. Also show that two complex homomorphisms cannot have the same kernel.	[6]
	OR	
(d)	Show that every closed proper ideal of a commutative unital Banach algebra is contained in a maximal ideal.	[6]
Q.5	(Start a new page)	[4]
(e)	For a Banach algebra \mathcal{A} , show that the Gel'fand transform $x \in \mathcal{A} \mapsto x \in \mathcal{C}(m(A))$ is	[6]
(<i>f</i>)	a nórm-decreasing homomorphism. Giving all details, show that radical of a commutative unital complex Banach algebra \mathcal{A} is a two sided closed ideal of \mathcal{A} .	[6]
	OR	
(f)	Let \mathcal{A} and \mathcal{B} be two isomorphic commutative unital complex Banach algebras. Show that their Gel'fand spaces are homeomorphic.	[6]
Ω	(Start a new page)	F # 3
(g	Let \mathcal{A} be a commutative unital complex Banach algebra. Show that the Gel'fand transform $x \in \mathcal{A} \mapsto \widehat{x} \in C(m(A))$ is an isometry if and only if $ x^2 = x ^2$ for all	[6]
(h	$x \in \mathcal{A}$.) State and prove that Gel'fand-Naimark theorem for a commutative unital C^* -algebras.	[6]
	OR	[0]
(h) Define a $Banach^*$ algebra and show that $A(\mathbb{D})$ is a Banach* algebra which is not a C^* -algebra.	ւ [6
	#######	

SEAT No.____

No of printed pages: 2

[26/A-18] Sardar Patel University

Mathematics

M.Sc. Semester III Friday, 21 April 2017 2.00 p.m. to 5.00 p.m.

	PS03EMT	CH03 - Problems and	Exercises in Mathe	matics II	
				Maximum Marks: 70	
Q.1 (1)	Choose the correct Let $f(x) = \lim_{n \to \infty}$	option for each of the $\sin^{2n} x$, $x \in [0, 2]$. T	ne following. hen $\int_0^2 f(x)dx$ equal		[8]
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) 2	
(2)	Let $a_n = \frac{1}{n^2}$, $b_n = \frac{1}{2}$	$(3+\frac{1}{n})$ and $c_n=a_n$	$+b_n$. Then $\lim_{n\to\infty}$	$\frac{1}{n}\sum_{k=1}^{n}c_{k}=\ldots$	
	(a) 0	(b) $\frac{2}{3}$	(c) $\frac{3}{2}$	$(d) \ 3$	
(3)	The residue of $f(z)$		2	· /	
	(a) 1		(c) -1	(d) 0	
(4)	Let f be an entire f	unction satisfying $ f($	$ z \le \frac{2}{1+ z ^2}$ for all z	$\in \mathbb{C}$. Then $f(0) = \dots$	
	(a) 0	(b) 1	(c) 2	(d) none of these	
(5)	Let G and G' be find the following is true	nite groups, and let	f:G o G' be a ho	omoniorphism. Which of	
	(a) $o(a) = o(f(a))$	(b) $o(a) \mid o(f(a))$	(c) $o(f(a)) \mid o(a)$	(d) none of these	
(6)	Which of the follow	ing is a conjugate to	$(1\ 2)(3\ 5) \in S_5$?	` .	
		(b) (1 2 3)		(d) (5 3 2 1)	
(7)	Let $ au$ be the topolog		a basis $\mathcal{B} = \{[a, b]:$	$a, b \in \mathbb{R}, a < b$ and let	
	4 .	(b) $\tau \subset \sigma$		(d) none of these	
(8)	The number of onto	functions from $X =$	$\{1,2,\ldots,n\}$ to itse		
		(b) 2^n	(c) n^2	(d) n!	
(a) (b)	Evaluate $\int_{[0,1]\times[0,1]}[x]$	ence $f_n(x) = \sin^n x \cos x + y dx dy$.			[14]
(C)	If f is analytic on a constant map.	domain D and if $ f $	is a constant map	, then show that f is a	
(d) :	Let f and g be analyshow that $f = \alpha g$ for	r some $\alpha \in \mathbb{C}$ with α	$\alpha = 1$.	$n \in \mathbb{N}$. If $f^n = g^n$, then	
(e) .	Let X be a topologic X is Hausdorff.	cal space. If $\{(x,x):$	$x \in X$ } is closed in	$X \times X$, then show that	

- (f) If (x_n) is a Cauchy sequence in a discrete metric space, then show that (x_n) is eventually constant.
- (g) Let $O_n(\mathbb{R})$ be the collection of all orthogonal $n \times n$ real matrices. Show that $O_n(\mathbb{R})$ is disconnected.
- (h) Determine all group automorphisms on Z.
- (i) Let H and K be subgroups of a finite group G. If (o(H), o(K)) = 1, then show that $H \cap K = \{e\}$.

- (a) Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function satisfying $f(x^2)=f(x)$ for all x. Show [6] that f is a constant map. Is the same true if f is not continuous? Why?
- (b) Let $A \subset [a, b]$. Show that χ_A is Riemann integrable over [a, b] if and only if the [6] measure of the boundary of A is 0. State the result you use.

OR

(b) Let $f:(a,b)\to\mathbb{R}$ be continuous. Show that f is uniformly continuous if and only if [6] f can be extended as a continuous function on [a,b].

Q.4

- (c) Let f be an entire function satisfying $|f(z)| \le 5 + 7|z|^8$ for all $z \in \mathbb{C}$. Show that f is a polynomial of degree at most 8. State the results you use.
- (d) Let $u: \mathbb{R}^2 \to \mathbb{R}$ be a harmonic function. If either u is bounded above or u is bounded below, then show that u is a constant map.
- (e) Let f be analytic at z_0 , and let z_0 be a zero of f. When is z_0 called a zero of f of [6] order n? Suppose that f and g are analytic at z_0 . If z_0 is a zero of f of order 2 and z_0 is a zero of g of order 3, then show that z_0 is a simple pole of $\frac{f}{g}$. Also, find the residue of $\frac{f}{g}$ at z_0 .

Q.5

- (f) Let G be a group of order pq, where p and q are primes such that p < q and $p \nmid q 1$. [6] Prove that G is cyclic. State carefully results you use.
- (f) Let a and b be elements of a finite group G. If ab = ba and (o(a), o(b)) = 1, then [6] show that o(ab) = o(a)o(b).

OR

(g) (a) Show that there is no group G for which o(G/Z(G)) = 77. [3]

[3]

(অ) Write all abelian groups (up to isomorphism) of order 120.

Q.6
(h) Let X and Y be topological space, and let Y be Hausdorff. If $f: X \to Y$ is continuous, [6] then show that $\{(x, f(x)) : x \in X\}$ is a closed subset of $X \times Y$. Is the converse true? Why?

- (i) Define basis for a topology on a set X. Show that the topology on X generated by a [6] basis \mathcal{B} is the smallest topology containing \mathcal{B} .
- (h) Let (X, d) be a metric space, and let A be a nonempty subset of X. Let $x \in X$. Show [6] that $x \in \overline{A}$ if and only if d(x, A) = 0.

նիկնինիկնի (2**)**

ø

[Contd...]

Sardar Patel University

M.Sc. Semester III Examination

Friday, 21st April 2017; 14:00 to 17:00 s: Code: PS03EMTH08: Title of Paper: Group Theory

Sub,	ject: Matner	natics; Code:	PSOSEMILU	·	mer: Group Theory Maximum Marks: 70	
Note:	Notations are	e standard.	•		Maximum Marks. 10	
Q.1	To answer, w	•	question nun $G, a^{m+n} = \underline{\hspace{1cm}}$	nber and optio	n number only.	[8]
				(iv) none of	the other three	
(b)	The inverse o	f the permutati	on (1 2 3) is	•	,	
					(iv) (2 1 3)	
(c)				· ·	$H \cap K) = \underline{\qquad}$	
. ,					(iv) o(HK)	
(d)				acy class $C(2\ 3)$		
	(i) 1	(ii) 2		(iii) 3	(iv) 6	
(e_i)	Total number	r of conjugacy c	lasses in S_4 is	•	•	
	(i) 2	(ii) 3		(iii) 4	(iv) 5	
(f)	A group of or	rder is sin	nple.	•		
	(i) 3	(ii) 4		(iii) 6	(iv) 8	
(g)	A group of or	rder is ab	elian.			
	(i) 6	(ii) 8		(iii) 16	(iv) 25	
(h)	There are	nonisomorp.	nic finite abelia	an groups of orde	er 16.	
	(i) 1 (i	i) 3 (iii) 5	(iv) 7			
		Seven. (Start				[14]
(a)	Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$	$\begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\binom{0}{1}$, where a, b ,	$c, d \in \mathbb{Z}$. Show t	hat $ad - bc = \pm 1$.	
(c) (d)	Let G be a given Let G be a fi	roup of order 18 nite group and	3. Show that that $a \in G$. Show the		$\{e\}$ such that $a^4 = e$.	
(f)	Give one reas Let A, B be	son to conclude subgroups of a	that a group G . For	of order 9 is abeliant		;
` ,	Let G be an group of all r	abelian group conzero complex	and \widehat{G} be the numbers. She	set of all homonom that \widehat{G} is abe	norphisms from G to the lian.	•
(i)	For $n \in \mathbb{N}$ denotes the morphism.	efine $\varphi: S_n \to$	\mathbb{Z}_2 by $\varphi(\theta) =$	$\begin{cases} 0 & \text{if } \theta \text{ is odd.} \\ 1 & \text{if } \theta \text{ is odd.} \end{cases}$	Show that φ is a homo-	-

Q.3 (Start a new page.)

- (a) Define a group and show that the set S_3 of all permutations on three symbols is a [6] nonabelian group.
- (b) Let H, K be two subgroups of a group G. Show that HK is a subgroup of G if and [6] only if HK = KH.

OR

(b) State and prove Cayley's Theorem

[6]

Q.4 (Start a new page.)

- (c) Define automorphism of a group. If G is a group, then prove that the set of all [6] automorphisms of G is also a group.
- (d) Let G be a finite group and $a \in G$. In usual notations, prove that $c_a = o(G)/o(N(a))$. [6]
- (d) If G is a group with $o(G) = p^n$ for some prime p and $n \in \mathbb{N}$, then show that [6] $Z(G) \neq \{e\}$.

Q.5 (Start a new page.)

- (e) Let G be a finite group and $p \in \mathbb{N}$ be prime such that $p^n \mid o(G)$. Show that G has a [6] subgroup of order p^n .
- (f) Let $p \in \mathbb{N}$ be prime. Let $n(k) \in \mathbb{N}$ be such that $p^{n(k)} \mid (p^k)!$ but $p^{n(k)+1} \nmid (p^k)!$. Show [6] that

 $n(k) = 1 + p + p^2 + \dots + p^{k-1}.$

(f) Define solvable group. Show that S_5 is not solvable.

[6]

Q.6 (Start a new page.)

- (g) Define internal direct product. Let G be an internal direct product of its subgroups N_1, N_2, \ldots, N_k and let $1 \leq i < j \leq k$. Show that $N_i \cap N_j = \{e\}$. Also for $a \in N_i$, $b \in N_i$, show that ab = ba.
- (h) For to isomorphic abelian groups G and G', and $s \in \mathbb{N}$, show that G(s) is isomorphic [6] to G'(s), where $G(s) = \{x \in G : x^s = e\}$.

OR

(h) Let $p \in \mathbb{N}$ be a prime. Prove that the number of nonisomorphic abelian groups of [6] order p^n is equal to the number of partitions of n.

 $\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}$

No of printed pages: 4

[63/A·3]

Sardar Patel University

M.Sc. (Sem-III), PS03EMTH12, Financial Mathematics-I; Wednesday, 19th April, 2017; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

Note: (i) The required table of normal distribution is attached with this question paper; (ii) Calculator is allowed.

Q.1	Answer the following	ıg.			[8]
1.	How many types of	basic financial deri	vatives are there?		(°)
	(A) 4	(B) 3	(C) 5	(D) 2	-
2.	How many types of	participants in opt	ions market?		
	(A) 2	(B) 3	(C) 4	(D) 1	
3.	How many types of	repo rates available	e?		
	(A) 3	(B) 2	(C) 4	(D) 1	
4.	The variances of the (A) additive (D) not multiplicate	(B) not additive	ve time periods in M (C) multiplicative	Aarkov process are	
5.	The mean change p (A) repo rate (D) none of these	er unit time is know (B) variance rate	wn as	(C) drift rate	
6.	The solution of y' +	y = 0 is			
	(A) $e^{-x} + c$	(B) ce^{-x}	(C) $\ln x + c$	(D) none of these	
7.	The BSM differentia	al equation is of (or	der,degree)		
	(A) $(2,1)$	(B) $(2,2)$	(C) $(1,2)$	(D) $(1,1)$	
8.	The delta for Europ				
	(A) 0 (D) none of these	(B) non negative		(C) non positive	
Q.2	Attempt any seven	b :			[14]
	Define derivative an				. ,
	Explain the differen		a call option and se	lling a put option.	
(c)	Write full form of L	IBOR and LIBID.			

- (d) Define repo rate.
- (e) A stock price is currently \$20. It is known that at the end of 3 months it will be either \$23 or \$17. The risk free interest rate is 12% per annum with continuously compounding. What is the value of a 3 months European call option with a strike price of \$21?
- (f) Suppose S follows the process $dS = \mu S dt + \sigma S dz$. What is the process followed by $\ln S$?
- (g) Give formula of two step binomial model.
- (h) Define Unit Impulse function.
- (i) Write down BSM formulas for European options on an asset paying no dividend.

[12]

(a) Explain arbitrageur with an example.

(b) Define (i) Exchange traded market; (ii) Futures contract; (iii) Speculator

OR

(b) Consider a call option of a share with striking price \$50, option value \$7 per share and it expires after 3 months. Under what circumstances will the seller of the option make a profit? Under what circumstances will the option be exercised? Draw a diagram illustrating how the profit from a short position in the option depends on the stock price at maturity of the option.

[12]

Q.4

(a) Explain Generalized Wiener process.

(b) Prove (i) $R_c = m \ln(1 + \frac{R_m}{m})$; (ii) $R_m = m(e^{\frac{R_c}{m}} - 1)$.

(b) An investor will receive ₹1200 after one year for an investment of ₹1000 now. Calculate the percentage return per annum with

(i) semi annual compounding; (ii) quarterly compounding; (iii) continuously compounding.

[12]

Q.5

(a) Discuss simple model for stock prices.

(b) Explain generalized one step binomial model.

(b) Find the price of a 6 months European put option with a strike price \$42 on a stock whose current price is \$40. Also the stock price either moves up or down by 10% for each 3 months period and the risk free interest rate is 12% per annum with continuously compounding.

[12]

Q.6

(a) Derive the put-call parity for European options.

(b) Show that $\Delta_C = 1 - N(-d_1)$.

OR

(b) Find the value of an European call option on a non-dividend paying stock when the current stock price is ₹50, the strike price is ₹55, the risk free interest rate is 10% per annum with continuously compounding, the volatility is 40% per annum, and the time to maturity is 3-months.

Table for N(x) When $x \ge 0$

This table shows values of N(x) for $x \ge 0$. The table should be used with interpolation. For example,

N(0.6278) = N(0.62) + 0.78[N(0.63) - N(0.62)]= 0.7324 + 0.78 × (0.7357 - 0.7324) = 0.7350

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120.	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	- 0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.5830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0:9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	₹ 0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	.0.9678	0.9686	0.9693	0.9699	0.9706
1.9		0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0:9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0:9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0:9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991+	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	.0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	0000.1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000.1	1.0000	1.0000
4.0	1.0000	1.0000	1:0000	1.0000	1.0000	1.0000	00001	1.0000	1.0000	1.0000

Table for N(x) When $x \le 0$

This table shows values of N(x) for $x \le 0$. The table should be used with interpolation. For example,

$$N(-0.1234) = N(-0.12) - 0.34[N(-0.12) - N(-0.13)]$$

$$= 0.4522 - 0.34 \times (0.4522 - 0.4483)$$

$$= 0.4509$$

	•									
	.00	.0.1	.02	.03	.04	.05	.06	.07	.08	09
	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	• • • • • •	0.4681	0.4641
-0.0	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.1	0.4002	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.2	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.3	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.4		0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.5	0.3085	0.3030	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.6	0.2743		0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.7	0.2420	0.2389	0.2358	0.2933	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.8	0.2119	0.2090	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.9	0.1841	0.1814			0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1251	0.1230	0.1210	0.1190	0.1170
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1056	0.1038	0.1020	0.1003	0.0985
-1.2	0.1151	0.1131.	0.1112	0.1093		0.0885	0.0869	0.0853	0.0838	0.0823
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0735	0.0721	0.0708	0.0694	0.0681
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749			0.0582	0.0571	0.0559
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0362	0.0371	0.0455
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0473	0.0375	0.0367
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0307	0.0301	0.0294
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314		0.0239	0.0233
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244		
	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0,0192	0.0188	0.0183
-2.0		0.0222	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.1	0.0179	0.0174		0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.2	0.0139	0.0130	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.3	0.0107	0:0080	0.0078	0:0075	0:0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.4	0.0082			0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.5	0.0062	0.0060	0.0059	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.6	0.0047	0.0045	0.0044	0.0043	0:0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.7	0.0035	0.0034	0.0033		0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.8	0.0026	0.0025	0.0024	0:0023	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.9	0.0019	0.0018	0.0018	0.0017			0.0011	0.0011	0.0010	0.0010
-3.0	0.0014	0.0013	0.0013	0.0012	0.0012	0.0011	0.0001	0.0008	0.0007	0.0007
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0006	0.0005	0.0005	0.000
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0004	0.0004	0.0004	0.0003
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004		0.0003	0.0003	
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003		0.0002	
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		0.0002		
	0.0002	0.0002	•	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
-3.6		0.0002	1000.0	0.0001	0.0001	1000.0		0.0001	0.0001	
-3.7	0.0001	0.0001	0.0001	0:0001	0.0001	1000.0		0:0001	0.0001	
-3.8		0.0001	0.0000	0.0000	0.0000	0.0000				
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
-4.0	0.0000	0.0000	0.0000							

A-53]

SARDAR PATEL UNIVERSITY

M.Sc. (Semester-III) Examination
April – 2017
Movid (1) – 17/04/2017
Time: 02:00 PM to 05:00 PM

Subi	ect: Mathematics Course No. PS03EMTH16(Relativity	v-T)
Note:	1. Answer to all questions to be given in the answer book only.	3 -7
1.000	2. Figures on the right indicate full marks.	
Q-1	Choose appropriate answer from the options given.	(08)
1.	In General Galelian transformation space coordinates are	` ,
	(a) relative (b) absolute (c) not defined (d) none of these	
2.	Newton's equations are invariant under transformation.	
	(a) Special Lorentz (b) General Lorentz	
3.	A frame moving with uniform acceleration relative to an inertial frame is	
	(a) an inertial frame (b) a rotating frame	
	(c) a non-inertial frame (d) not a frame	
4.	Volume of an object is under Special Lorentz transformations	
_	(a) Absolute (b) relativistic (c) non-deterministic (d) non-relativistic	
5.	In Special Relativity, moving clocks appear to run	
_	(a) slow (b) fast (c) with constant speed (d) uniformly	
6.	Momentum 4-vector is	
7	(a) time-like (b) of constant magnitude (c) null (d) contravariant	
7.	Which one of the following is not correct according to Special Relativity?	
	(a) Mass is equivalent to energy.	
	(b) Mass changes with motion.	
	(c) Mass of a particle remains constant during the motion.	
8.	(d) Rest mass and moving mass of a photon are different.	
٥.	The condition for flat space is (a) $R_{hijk} = 0$ (b) $R_{ij} = 0$ (c) $R = 0$ (d) $g_{ij} = 0$	
Q-2	Attempt any SEVEN (c) $K = 0$ (d) $g_{ij} = 0$	(14)
1.	State general Galelian transformation.	(14)
2.	State postulates of special relativity.	
3.	What is the formula for relativistic composition of velocities.	
4.	Explain the meaning of time dilation.	
5.	Give expression of the spacetime interval.	
6.	Define a space-like vector.	
7.	State the expression of transformation of a contravariant vector.	
8.	What is meant by Minkowski structure of spacetime.	
9.	State the expressions of Christoffel symbols of both kinds.	

Q-3		
(a) (b)	Show that wave equation is not invariant under special Galilean transformation. Show that composition of two special Lorentz transformations is a special Lorentz transformation.	(06) (06)
	OR	
(b)	A rod of length 50 cm is moving with velocity 0.9c in a direction inclined at 60° to its own length. Find the apparent length of this rod.	
Q-4		
(a)	Discuss the concept of Doppler effect using special relativity.	(06)
(b)	Show the spacetime interval is invariant under SLT.	(06)
	OR	
(b)	A source of red signal (wavelength 7500 A°) moves with velocity 1.5x10 ⁸ meters per second. What will be the apparent wavelength of the light?	
Q-5		
(a)	Define velocity 4-vector. Show that it has constant norm.	(06)
(b)	Define momentum 4-vector and find its components.	(06)
	OR	
(b)	Mass of moving particle appears to increased by 25% of its rest mass. Find its velocity.	
Q-6		
(a)	Explain the meaning of a covariant vector with example.	(06)
(b)	State geodesic equation and show that geodesics in a plane are straight lines.	(06)
	OR	
(b)	Discuss principle of equivalence. ***********************************	

	at a distriction of the contract of the contra	

No. of Printed Pages: 2 Sardar Patel University

M. Sc. (Third Semester) Examination Monday, April 24, 2017

	\mathbf{C}	ourse	No. PS03E	MTH24	: C Progra	mming an	d Mathe	matical Algorithms	III
	Tim	ie: 0	2.00 p.m. to	04.00 p.m	<i>1</i> .		Mo	aximum marks.	· 35
	Not	te: Fi	gures to the righ	nt indicates ma	arks.			•	
1.	Cho i)	Supp	propriate answer ose double p, *q; &p = q;		ration. Then	which of the		ving is true ? (d) q = p;	[5]
	ii) iii)	Supp (a)	·	nd &v is 8120 (b) 8122	0. If $u = &v$ (c)	+ 2;, then 8128		ent of u is none of these	
)	(a) (c)	float f(float &x float f(float *x,	, int &y)	(b) (d)		• ,	nt &y)	
	iv)	Whice (a) (b) (c)	Declaration of st	atic and autom	al variables i	n the functi	ion main	in() have same role. () have same role. n main() have same	
	_v)		None of these is	$\{z=z * a\} voi$	d main(){f(2)); <i>f(5);}</i> wh	at is the	content of z after the	
		(a)	4	(b) 6	(c)	30	(d)	none of these	e e a
2.								[6]	
	a) b)		e me meaning of it is a data file? \						
	c)		ch operators one				•		
	d)	In th	e graphics mode putpixel (int x	e, write the eff			tions:		
			line(int x0, int	y0, int x1, int					
3.	a)	(i)	What is a static Explain with ex	xample.				it carry value?	[3]
	1 \		Write note on f					ot z whore	[3]
	b)	(1)	Write an algori $p(x) = a_0 + a_1(x)$						[2]
	,	(ii)						ing of each of the	[2]
			a, *a, a+3, *(a-		12.1				[0]
		(iii)	int a, *x; float b, $x = y$, *y; are declara y = &a		&b = y	f the foll	owing is invalid. b = &a	[2]
	1.)	(i)	Find the values	s of a and h of	OR tar the avec	-	ch of th	e following	[3]
	b)	(i)	program segme (1) int a = 12, t pa = &a a	ents: 0 = 5, *pa,* pb; = a++ + b;		int $a = 11$, $pb = \&b$;	, b = 13, a += * ₁	*pa,*pb; pb / 5;	[2]
		(ii)	pb = &b b What is a poin declaration, wi	ter? How does				1*4; d? If int *x, *y; is a	ι [3]
			ucciaramon, wi	ne me meam	15 OI A 2 al	м у Э.		P. T. O	·

4.	a)	(i)	i) Define a function to add two matrices.	
		(ii)	Define a function $f(x,y) = \begin{cases} e^{x+y} & \text{if } x \le y \\ e^{x+y} & \text{if } x > y \end{cases}$	[2]
		(iii)	Discuss bubble sorting.	[2]
	b)	(i)	Write a C- program to find $\int_0^2 x^2 e^x dx$ by using rectangle rule.	[2]
		(ii)	Write a C-program to draw x-axis and y-axis and the graph of $y = \sin(x)$, by considering center of the screen as the origin.	[2]
		(iii)	Define a function max to find the maximum of two numbers.	[2]
			OR	roz
•	·b)	(i)	Define a functions which finds a ⁿ , where a is a real number and n is a natural number.	[2]
		(ii)	Write a C-program to solve $y' = -x/y$, in the interval [0, 5) by Euler's method (given that $y(0) = 5$)	
		(iii)	Write a C-program to draw x-axis and y-axis and the graph of $y = e^x$, by considering center of the screen as the origin.	[2]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester III) Examination

			M. Sc. (Semester	III) Examination		
Date: 21-04-2017			•	·	Time: 2.00 To 5.00]	p.m.
	Subjec	et: MATHEMATIC	S Paper No. 1	PS03EMTH25 – (0	Graph Theory – I)	
					Total Marks:	70
1.		Choose the correct	option for each ques	stion:		[8]
	(1)	For $G = K_n$, if diam (a) $D < R$	n(G) = D and $rad(G)(b) D > R$		(d) $D = 2R$	
	(3)	Let T be a spanning (a) $d^+(R) > 0$, $d^-(R) = 0$, $d^+(R) = 0$	(5) > 0	Then (c) $d^{+}(R) = 0$, $d^{-}(R) = 0$, $d^{-}(R) = 0$, $d^{-}(R) = 0$, $d^{-}(R) = 0$	•	
	(3)	If G is a simple dig	raph with vertices {	$v_1, v_2,,v_n$ } & e ed	ges, then $\sum_{i=1}^{n} d^{+}(v_{i}) =$	
			(b) e ²	(c) 2e	(d) ne \int_{a}^{a}	
	(3)	For $G = C_5$ with clo	ckwise direction, ra	nk(B) is		
		(a) 0	(b) 1	(c) 4	(d) 5	
	(5)	The coefficient c ₆ in (a) 0	n chromatic polynor (b) 1	nial of K ₆ is (c) 6!	(d) 6	
	(6)	Which of the follow (a) P ₅	ving graphs is not up (b) K_5	niquely colorable? (c) K _{5, 5}	(d) C ₅	
	(7)	Let G be a simple g (a) perfect ⇒ ma (b) maximum ⇒ j	ximum	ed vertex. Then a matrix (c) maximal \Rightarrow maximal \Rightarrow point (d) maximal \Rightarrow point (eq. 1) representation (eq. 1) r	aximum	
	(8)	If $G = P_{11}$, then				
		(a) $\alpha(G) = \beta(G)$.	(b) $\alpha(G) = \beta'(G)$	(c) $\alpha'(G) = \beta'(G)$	(d) none of these	
2	•	Attempt any SEVE	N:			[14]
	(a) (b) (c) (d) (e) (f)	Find the radius of 1 Find E(G) , if G is Prove or disprove: Give an example of Define adjacency management	s a complete, symm A balanced digraph f a spanning in-tree natrix of a digraph.	is regular. which is also a span		

Prove or disprove: The graph P₄ is isomorphic to K_{1,3}

Prove or disprove: An edge-cover in a graph is a matching.

Prove or disprove: For any graph G, $\alpha(G) = \beta(G)$.

(g)

(h)

(i)

٥,	(a)	Frove that it G is a connected Euler digraph, then it is balanced.	[օ]
	(b)	Define symmetric and complete symmetric digraph and give one example of each.	[6]
		Also, discuss the relation between them.	
		OR	
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2,, v_n$	[6]
		such that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2, n$.	
4.	(a)	Let G be a connected digraph with n vertices. Prove that rank of $A(G) = n - 1$.	[6]
	(b)	Define spanning out-tree, spanning in-tree and give one example of each.	[6]
		OR	
	(b)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is 1, -1 or 0.	[6]
5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \leq S $.	[6]
	(b)	Find the chromatic polynomial for graph $G = K_{1,3}$.	[6]
	` ,	OR	r - 1
	(b)	Prove: For a connected graph G, $\chi(G) = 2$ if and only if G has no odd cycle.	[6]
6.	(a)	Prove: A matching M in graph G is maximum if and only if G has no	[6]
		M-augmenting path.	
	(b)	Let G be a graph (no isolated vertex) with n vertices. Prove that $\alpha'(G) + \beta'(G) = n$.	[6]
		OR	
	(b)	Define $\alpha(G)$ and $\alpha'(G)$ and find it with the corresponding sets, for $G = P_7$.	[6]

X-X-X-X-X