SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

Date: 2-11-2018, Friday

Time: 10.00 To 1.00 p.m.

Subject: MATHEMATICS

Paper No. PS02EMTH21 - (Graph Theory - I)

Total Marks: 70

1. Choose the correct option for each question:

[8]

- (1) If $K_{1,n} = K_{n+1}$, then
 - (a) n = 1
- (b) n = 2
- (c) n > 2
- (d) none of these

- (2) A symmetric digraph is
 - (a) Euler
- (b) connected
- (c) balanced
- (d) none of these
- (3) For $G = C_n$ with clockwise direction, rank(A) is
 - (a) 1
- (b) n-1
- (c) n
- (d) none of these
- (4) If G is a complete symmetric digraph with n vertices, then |E(G)|=
 - (a) $\frac{n(n-1)}{2}$
- (b) n
- (c) n(n-1)
- $(d) n^2$
- (5) The coefficient c_2 in chromatic polynomial of C_7 is
 - (a) 7!
- (b) 7
- (c) 1
- (d) 0
- (6) Which of the following graphs is not Hamiltonian?
 - (a) K_n
- (b) K_{n, n}
- (c) P_n
- (d) C_n
- (7) Let G be a simple graph without isolated vertex. Then a matching M in G is
 - (a) maximum \Rightarrow perfect
- (c) maximal ⇒ maximum
- (b) perfect \Rightarrow maximal
- (d) maximal ⇒ perfect
- (8) If $G = K_{3, n}$, then $\beta(G) = ____.$
 - (a) 3
- (b) n
- (c) $min{3, n}$
- (d) $\max\{3, n\}$

2. Attempt any SEVEN:

[14]

- (a) Find the radius of $K_{m,n}$ (m, $n \ge 2$).
- (b) Prove or disprove: A balanced digraph is connected.
- (c) Define adjacency matrix in a digraph and give one example of it.
- (d) Prove or disprove: Every connected digraph has a spanning out-tree.
- (e) Prove: If G is a bipartite graph, then $\chi(G) = 2$.
- (f) What is Four color problem?
- (g) Prove or disprove: The graph C₄ is isomorphic to K_{2, 2}.
- (h) Prove: If $S \subset V(G)$ is a vertex cover, then V(G) S is an independent set, in G.
- (i) Define perfect matching and give one perfect matching in P₈.

- 3. (a) Prove that if G is connected Euler digraph, then it is balanced.
 - (b) Define spanning in-tree, spanning out-tree and give one example of each in the same digraph. [6]

OR

- (b) Define the following digraphs with examples: [6]
 (i) Asymmetric & complete asymmetric (ii) Symmetric & complete symmetric.
- 4. (a) Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G without self-loop. Then prove that $AB^{T} = 0$.
 - (b) Prove that an arborescence is a tree in which every vertex other than the root has an in-degree exactly one. [6]

OR

(b) Define a fundamental circuit matrix in a digraph and find it w. r. t. spanning tree [6] $T = \{a, c, d, f\}$ in digraph below:

- 5. (a) Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G S) \le |S|$. [6]
 - (b) Let G be a k-chromatic graph with n vertices. Prove that $n \le k \alpha(G)$. [6]

OR

- (b) Define chromatic number $\chi(G)$ of a graph G. Give an example of a non-complete graph G with $\chi(G) = \Delta(G) + 1$. [6]
- 6. (a) Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.
 - (b) State Hall's theorem and show that a k-regular bipartite graph has a perfect [6] matching.

OR

(b) Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = K_{n,m}$ ($n \neq m$). [6]

· 3 - 5 - 5 - 5