(P.T.O)

SARDAR PATEL UNIVERSITY

		DAICIALDE					
	M.Sc. (M	lathematics) Sen Friday, 02 nd No	rester	r - 11 Exam or 2018	nnation		
	PS02EMT	'H04, Mathemati			echanics		
Time:	10:00 a.m. to 01					m marks: 70	
Note: (1) Figures to the rig 2) Assume usual/sta	th indicate marks of andard notations who	the reerever	espective que applicable.	stion.		20
Q-1 Cho	oose the most appro	opriate option for e	ach of	the following	ng questic	ns.	[08]
	f work done due to						
(;	a) λV	(b) $-\nabla \times V$	(c)	conservativ	re (d)	zero	
2. F	or a system of part	icles center of mass	3	·			
(;	a) is unique		(c)	does not ex	cists		
(1	b) is stationary		(d)	is not uniq	ue		
3	gives the sh						
2	a) Straight line	, ,			8.5	Great circle	
4. I	f Lagrangian does r						
(a) L	(b) <i>q</i>	(c)	p	(d)	H	
5. V	Which of the followi	ng is incorrect?		Or II.		ar au	
(a) $\frac{\partial L}{\partial t} = -\frac{\partial H}{\partial t}$	(b) $\frac{\partial L}{\partial q_j} = -\frac{\partial H}{\partial q_j}$	(c)	$\frac{\partial L}{\partial t} = -\frac{\partial n}{\partial t}$	(d)	$\frac{\partial L}{\partial q_j} = \frac{\partial H}{\partial q_j}$	
	f q_j is cyclic in L , t						
(a) non-cyclic	(b) ignorable	(c)	zero	(d)	constant	
- V 5	$q_2 + q_3, p_2] = \underline{\hspace{1cm}}$		26 35		. (1)	~	
(a) -1	(b) 1	(c)	0	(d)	2	Yes
	Lagrange bracket is	 • ,		,	. 1 .		
(a) constant				(c) always non-vanishing (d) a canonical invariant			
(b) symmetric		(α)	а сапошса	ı iliyatları	·	
Q-2 At	tempt any seven o	of the following.			*		[14]
(a)	Define a non-holor	nomic constraint ar	nd giv	e its exampl	e.		
(b)	Define center of m	ass for a system of	parti	cles.			
(c)	Define cyclic coord	dinate					
(d)	State law of conse	rvation of energy in	n Lagi	rangian form	nalism.		
(e)	In usual notations	s, show that $\frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$	$\frac{dH}{dt}$.				
(f)	State the principle						at Fi
(g)	State the condition function of type F	on for a canonical $F_2(q, P, t)$.	trans	formation g	generated	by a generating	ng
(h)	Show that the tra		p_i, P_i	$=-q_i$ is can	onical.	*	
(i)		nian of a system. S				nstant of motio	n,
(-)	then $\frac{\partial u}{\partial t} = [H, u]$.	· • • • • • • • • • • • • • • • • • • •	~	** 1970_E/* 5	n 40 Ea		Comal

- Q-3 (a) State Lagrange's equations of motion in general form. Hence derive Lagrange's equations of motion for a system when the forces are conservative and potential is independent of velocities.
 - (b) Obtain Lagrange's equations of motion for a simple pendulum. [06]

OR

- (b) For a system with *n*-degrees of freedom show that $L' = L + \frac{dF}{dt}$ satisfies Lagrange's equations of motion, where L is Lagrangian of the system and $F(q_1, q_2, \ldots, q_n, t)$ is an arbitrary differentiable function of its arguments. [06]
- Q-4 (a) State and prove the law of conservation of linear momentum in Lagrangian formalism. [06]
 - (b) Derive Euler's equation as the condition for extremum of the integral $\int_{x_1}^{x_2} f(y, \dot{y}, x) dx$. [06]

OR

(b) Lagrangian of a system is given by

$$L = \frac{m}{2} \left(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2 \right) - \frac{k}{2} \left(ax^2 + 2bxy + cy^2 \right).$$

Evaluate the energy function and conjugate momenta. Which of them conserved? Justify.

- Q-5 (a) State Hamilton's modified principle and derive Hamilton's equations of motion [06] from it.
 - (b) Derive Routhian equations of motion for a system with Lagrangian given by [06]

$$L = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) + \frac{k}{r}.$$

OR

- (b) State Hamilton's equations of motion in matrix form and hence verify them for a system with degrees of freedom n = 3.
- Q-6 (a) Define a symplectic matrix. Show that the set of symplectic matrices forms a group under matrix multiplication. [06]
 - (b) Define canonical transformation. Show that the transformation [06]

$$Q_1 = q_1, \quad P_1 = p_1 - 2p_2, \quad Q_2 = p_2, \quad P_2 = -2q_1 - q_2.$$

is canonical.

OR

(b) Using Poisson brackets, show that no two components of angular momentum \bar{L} [06] can simultaneously be chosen as canonical variables.

