No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M. Sc. (Semester II) Examination

Time: 10.00 To 01.00 PM

Date: 2-11-2018, Foiday

1.

2.

(h)

(i)

Paper No. PS02EMTH02 - (Graph Theory - I)

ubjec	et: MATHEMATICS Paper No.	PS02EM1H02 - (Total Marks	: 70		
	Choose the correct option for each qu	estion:		[8]		
(1)	The radius of K_n (n > 3) is (a) 1 (b) 2	(c) n	(d) 0			
(2)	Let T be a spanning in-tree with root (a) $d^{-}(R) = 0$ (b) $d^{-}(R) > 0$	R. Then (c) $d^{+}(R) > 0$	(d) none of these			
(3)	For $G = C_n$ with clockwise direction,		(d) none of these			
	(a) n (b) $n-1$	(c) 1				
(4)	If G is a simple digraph with vertices $\{v_1, v_2,, v_n\}$ & e edges, then $\sum_{i=1}^n d^+(v_i) =$					
	(a) ne (b) 2e	(c) e ²	(d) e			
(5)	The coefficient c ₄ in chromatic polyr (a) 0 (b) 1	nomial of K ₄ is (c) 4	(d) 4!	ě		
(6)	Which of the following graphs is Hamada, (a) $K_{n,2n}$ (b) P_{2n}	miltonian? (c) C _n	(d) P _n			
(7)	Let G be a simple graph without isolated vertex. Then a matching M in G is (a) maximum ⇒ perfect (c) maximal ⇒ maximum (b) maximum ⇒ maximal (d) maximum ⇒ perfect					
(8)	For which of the following graphs, c (a) P ₉ (b) K ₁₀	$\alpha'(G) = \beta(G)?$ (c) K_{11}	(d) C ₁₃			
	Attempt any SEVEN:			[14]		
(a)	Find the diameter of K _{3,4} .					
(b)	Prove or disprove: An Euler digraph is connected.					
(c)	Define circuit matrix in a digraph.					
(d)	Prove or disprove: Every connected digraph has a spanning in-tree.					
(e)	Prove: If $G = C_n$ and n is odd, then $\chi(G) = 3$.					
(f)	What is Four color problem?					
(g)	Why P ₄ is not isomorphic to K _{1,3} ?					

Define an edge cover of a graph and give one example of it.

Prove: If $S \subset V(G)$ is an independent set, then V(G) - S is a vertex cover in G.

3.	(a)	Define the following with examples: (i) In-degree (ii) Out-degree (iii) Balanced digraph (iv) Regular digraph	[o]
	(b)	Prove that if G is connected Euler digraph, then it is balanced.	[6]
.1	(-)	OR	
	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.	[6]
4.	(a)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is $1, -1$ or 0 .	[6]
	(b)	Prove that an arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
		OR	5 6 7
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2,, v_n$	[6]
		such that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2, n$.	
5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \leq S $.	[6]
	(b)	Let G be a k-chromatic graph with n vertices. Prove that $n \leq k \alpha(G)$.	[6]
	(-)	OR	
	(b)	Find the coefficients c ₂ and c ₃ of Chromatic polynomial of graph K _{2, 2} .	[6]
6.	(a)	Let G be a graph (no isolated vertex) with n vertices. Prove that $\alpha'(G) + \beta'(G) = n$.	[6]
	(b)	State Hall's theorem & show that a k-regular bipartite graph has a perfect matching.	[6]
	. /	OR	
	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = P_7$.	[6]