	SEAT No		No of printed pages: 2	
L	55]	TInizzonaitza	ito of printed pages. 2	
	Sardar Patel		ential Equations:	
M.Sc. (Sem-II), PS02CMTH25, Methods of Partial Differential Equations; Tuesday, 30 th October, 2018; 10.00 a.m. to 01.00 p.m.				
	Tuesday, 30 October, 2018	; 10.00 a.m. to 01.00		
		1 1 (2) 132	Maximum Marks: 70	
Note:	(i) Notations and terminologies are stan	dard; (II) Figures to	the right indicate marks.	
Q.1	Answer the following.			[8]
1.	The order of $(D + D')(D' - D)^2 z = 0$ is	3		
	(A) 2 (B) 3	(C) 4	(D) 1	
2.	2. The equation $r-t=0$ can be written in the form $F(D,D')z=0$, where $F(D,D')$			
	equals		(m) =0 m	
	(A) $D^2 - D'^2$ (B) $D'^2 - D^2$		(D) $D^2 - DD'$	
3. The complete integral of $z = px + qy + pq$ is				
	(A) $z = ax + by + ab$ (C) $z = ax^2 + by^2 + ab$	(B) $z = ap + bq + c$	pq	
	$(C) z = ax^2 + by^2 + ab$	(D) none of these		
4.	4. Let $u = \log x$ and $v = \log y$ in $z = z(x, y)$. Then $y^2 \frac{\partial^2 z}{\partial y^2}$ becomes			
	(A) $\frac{\partial^2 z}{\partial v^2} - \frac{\partial z}{\partial v}$	(B) $\frac{1}{y} \left(\frac{\partial^2 z}{\partial v^2} - \frac{\partial z}{\partial v} \right)$		
	(C) $\frac{1}{u^2} \left(\frac{\partial^2 z}{\partial v^2} - \frac{\partial z}{\partial v} \right)$	(D) none of these		
5. The equation $x^2r + 2xys + y^2t = 0$ is elliptic, if				
	(A) $ x = 2$ (B) $ x < 2$	(C) $ x > 2$	(D) none of these	
6.	In Monge's method, the λ - quadratic	equation of $3s + rt$ -	$-s^2 = 2$ is	
	$(A) 2\lambda^2 + 3\lambda + 1 = 0$	(B) $2\lambda^2 - 3\lambda + 1 =$ (D) none of these	= 0	
	$(C) \lambda^2 + 3\lambda + 1 = 0$	(D) none of these		
7.	The solution of $x^2y'' + xy' + (x^2 - m^2)$	y = 0 is	(70)	
	(A) $J_m(x)$ (B) $J_m(mx)$	(C) $J(m^2x)$	(D) none of these	
8.	The two dimensional wave equation is	(D) (1		
	$(A) \ u_{xx} + u_{yy} = 0$	(B) $u_{xx} + u_{yy} = \frac{1}{c^2}$	$\cdot u_t$	
	(C) $u_{xx} + u_{yy} = \frac{1}{c^2} u_{tt}$	(D) none of these		
0.9	Attament any agreem:			114

Q.2 Attempt any seven:

(a) Define general solution of partial differential equation.

(b) Find a pde by eliminating f and g from z = f(x - y) + g(x + y).

(c) Give an example of pde whose general solution is $\phi_1(x+y) + \phi_2(x-y)$, where ϕ_1 and

 ϕ_2 are arbitrary functions.

(d) Find D^2z , if x and y in z=z(x,y) replaced by $u=\log x$ and $v=\log y$. (e) Show that p=F(x,y) and q=G(x,y) are compatible if $\frac{\partial F}{\partial y}=\frac{\partial G}{\partial x}$. (f) Give an example of pde which is hyperbolic in region $\{(x,y)\in\mathbb{R}^2:|x|<2\}$.

(g) Find u = u(x, y) and v = v(x, y) to covert r - t = 0 in the canonical form.

(h) Write heat equation in spherical coordinates.

(i) State Neumann interior BVP for a circle.

Q.3

(a) If $(\beta D' + \gamma)^2$ $(\beta \neq 0)$ is a factor of F(D, D'), then prove that $e^{-\frac{\gamma}{\beta}y}[\phi_1(\beta x) + y\phi_2(\beta x)]$ [6] is a solution of F(D, D')z = 0, where ϕ_1 and ϕ_2 are arbitrary functions.

(b) Find the general solution of $(D^2 - D'^2 - 3)z = e^{2x+y}$.

[6]

6

[6]

(b) Find particular integral of $(D^2 + 2DD' + D'^2)z = x \sin y$.

Q.4

(a) Find the general solution of $(x^2D^2 - y^2D'^2 - yD' + xD)z = xy^2$. 6

(b) Find the complete integral of $(p^2 + q^2)y - qz = 0$ using Charpit's method.

(b) Find the complete integral of $z^2 = pqxy$ using Jacobi's method.

Q.5

[6] (a) Convert $r + x^2t = 0$ into the canonical form.

(b) Solve r - 4t = 0 using Monge's method.

(b) Solve $3r + 4s + t + rt - s^2 - 1 = 0$ using Monge's method.

Q.6

(a) Solve $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of separation of variables and show that the [6] solution can be put in the form of $\varphi(x,y,t)=e^{i(nx+my)-k(n^2+m^2)t}$, where n and m are constants.

(b) Derive Laplace equation in cylindrical coordinates.

[6]

(b) Find u = u(x, y) such that $\nabla^2 u = 0$ in $\{(x, y) : 0 \le x \le a, 0 \le y \le b\}$ with

$$u(x,0) = f(x), 0 \le x \le a$$

$$u(a,y) = 0, \quad 0 \le y \le b$$

$$u(x,b) = 0, \quad 0 \le x \le a$$

$$u(0,y) = 0, \quad 0 \le y \le b.$$

