[82]

TEAT No.

No of printed pages: 2

Sardar Patel University
M.Sc. (Sem-II), PS02CMTH22, Algebra-I;
Tuesday, 23rd October, 2018; 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70 d terminologies are standard; (ii) Figures to the right indicate marks. No

ote: (i) Notations and terminologies are stan	dard; (ii) Figures to) the right indicate marks.	
			[8]
Q.1 Answer the following. 1. Which of the following is a unit in the r (A) 0 (B) -1	ring \mathbb{Z} ? (C) 2	(D) none of these	
2. Which is from the following is not an E	Suclidean ring? (C) $(2\mathbb{Z}, +, \cdot)$	(D) none of these	
3. The number $\sqrt{1+\sqrt{2}}$ is algebraic over (A) 1 (B) 5	\mathbb{Q} of degree $(C)/2$	(D) 4	
4. The polynomial $x^2 + 2$ is reducible ove (A) \mathbb{R} (B) \mathbb{Q}	r $^{(C)}$ $^{\mathbb{C}}$	(D) none of these	
5. $o(G(\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{5}))) = (B) 1$	(C) 3	(D) none of these	
6. The degree of the splitting field of x^4 - (B) 2 (B) 2	(C) 3	(D) 4	
7. Which is not normal extension of \mathbb{Q} ? (A) $\mathbb{Q}(\sqrt{2})$ (B) $\mathbb{Q}(\sqrt{7})$	(C) Q	(D) none of these	
8. The polynomial $x^2 - 5 \in \mathbb{Q}[x]$ is (A) reducible over \mathbb{Q}	(B) solvable by to (D) none of thes	radicals over $\mathbb Q$ e	
(C) not solvable by radicals over \mathbb{Q}			[14]
 Q.2 Attempt any seven: (a) State Pigeonhole Principle. (b) If R is an Euclidean ring and a, b, c ∈ (c) Find [C: R]. (d) Is sin 1º algebraic over Q? Justify. (e) Show that any two minimal, integer if (f) Define splitting field. (g) Find G(C: R). (h) Define radical extension. (i) Define solvable group. 	•		
	\bigcirc	1 A G	1

(1)

(P-T.O.)

Q.3

(a) Show that every Euclidean ring is a principal ideal ring and possesses a unit element. [6]

(b) If p is a prime number, prove that the polynomial $x^{p-1} + x^{p-2} + \cdots + x^2 + x + 1$ is irreducible over the field of rational numbers.

OR.

(b) In an Euclidean ring R, show that the ideal $\langle a \rangle$ is a maximal ideal in R if and only if a is a prime element of R.

Q.4

(a) If L is a finite extension of K and if K is a finite extension of F then show that L is a finite extension of F.

(b) Show that a polynomial of degree n over a field can have at most n roots in any [6] extension field.

OR

(b) Construct a field containing exactly 9 elements. State results which you use.

Q.5

(a) Let $f(x) \in F[x]$. Then show that f(x) has a multiple root iff f(x) and f'(x) have [6] nontrivial common factor.

(b) If If a and b are algebraic over F; whose characteristic zero, then show that there [6] exists an element $c \in F(a, b)$ such that F(a, b) = F(c).

OF

(b) Find the degree of the splitting field of $x^4 + x^2 + 1$ over \mathbb{Q} .

Q.6

(a) Show that K is a normal extension of F if K is the splitting field of some polynomial [6] over F.

(b) Show that a group G is solvable iff $G^{(k)} = \{e\}$ for some $k \in \mathbb{N}$.

[6]

OR

(b) State the fundamental theorem of Galois theory.

