[82] TEAT No. No of printed pages: 2 Sardar Patel University M.Sc. (Sem-II), PS02CMTH22, Algebra-I; Tuesday, 23rd October, 2018; 10.00 a.m. to 01.00 p.m. Maximum Marks: 70 d terminologies are standard; (ii) Figures to the right indicate marks. No | ote: (i) Notations and terminologies are stan | dard; (ii) Figures to |) the right indicate marks. | | |--|---|--------------------------------|------| | | | | [8] | | Q.1 Answer the following. 1. Which of the following is a unit in the r (A) 0 (B) -1 | ring \mathbb{Z} ? (C) 2 | (D) none of these | | | 2. Which is from the following is not an E | Suclidean ring? (C) $(2\mathbb{Z}, +, \cdot)$ | (D) none of these | | | 3. The number $\sqrt{1+\sqrt{2}}$ is algebraic over (A) 1 (B) 5 | \mathbb{Q} of degree $(C)/2$ | (D) 4 | | | 4. The polynomial $x^2 + 2$ is reducible ove
(A) \mathbb{R} (B) \mathbb{Q} | r $^{(C)}$ $^{\mathbb{C}}$ | (D) none of these | | | 5. $o(G(\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{5}))) = (B) 1$ | (C) 3 | (D) none of these | | | 6. The degree of the splitting field of x^4 - (B) 2 (B) 2 | (C) 3 | (D) 4 | | | 7. Which is not normal extension of \mathbb{Q} ? (A) $\mathbb{Q}(\sqrt{2})$ (B) $\mathbb{Q}(\sqrt{7})$ | (C) Q | (D) none of these | | | 8. The polynomial $x^2 - 5 \in \mathbb{Q}[x]$ is (A) reducible over \mathbb{Q} | (B) solvable by to (D) none of thes | radicals over $\mathbb Q$
e | | | (C) not solvable by radicals over \mathbb{Q} | | | [14] | | Q.2 Attempt any seven: (a) State Pigeonhole Principle. (b) If R is an Euclidean ring and a, b, c ∈ (c) Find [C: R]. (d) Is sin 1º algebraic over Q? Justify. (e) Show that any two minimal, integer if (f) Define splitting field. (g) Find G(C: R). (h) Define radical extension. (i) Define solvable group. | • | | | | | \bigcirc | 1 A G | 1 | (1) (P-T.O.) Q.3 (a) Show that every Euclidean ring is a principal ideal ring and possesses a unit element. [6] (b) If p is a prime number, prove that the polynomial $x^{p-1} + x^{p-2} + \cdots + x^2 + x + 1$ is irreducible over the field of rational numbers. OR. (b) In an Euclidean ring R, show that the ideal $\langle a \rangle$ is a maximal ideal in R if and only if a is a prime element of R. Q.4 (a) If L is a finite extension of K and if K is a finite extension of F then show that L is a finite extension of F. (b) Show that a polynomial of degree n over a field can have at most n roots in any [6] extension field. OR (b) Construct a field containing exactly 9 elements. State results which you use. Q.5 (a) Let $f(x) \in F[x]$. Then show that f(x) has a multiple root iff f(x) and f'(x) have [6] nontrivial common factor. (b) If If a and b are algebraic over F; whose characteristic zero, then show that there [6] exists an element $c \in F(a, b)$ such that F(a, b) = F(c). OF (b) Find the degree of the splitting field of $x^4 + x^2 + 1$ over \mathbb{Q} . Q.6 (a) Show that K is a normal extension of F if K is the splitting field of some polynomial [6] over F. (b) Show that a group G is solvable iff $G^{(k)} = \{e\}$ for some $k \in \mathbb{N}$. [6] OR (b) State the fundamental theorem of Galois theory.