No of printed pages: 2 Sardar Patel University Mathematics M.Sc. Semester II Saturday, 20 October 2018 10.00 a.m. to 01.00 p.m. PS02CMTH21 - Real Analysis I Maximum Marks: 70 [8] Q.1 Fill in the blanks. $(1) m^*([-1,1] \cap (\mathbb{R} - \mathbb{Q})) = \cdots$ (c) 2 (b) 1 (a) 0 (2) Let E be a nonmeasurable subset of \mathbb{R} . Which of the following functions is measurable? (c) $(\chi_E)^2$ (d) $\chi_E + \chi_{\mathbb{R}-E}$ (b) $1 - \chi_E$ (a) χ_E (3) Which of the following functions is not Riemann integrable over [0, 1]? (c) $x \cos \frac{1}{x}$ (b) $\sin x$ (a) $x \sin \frac{1}{x}$ (4) Let $f = \chi_E + \chi_F$, where E and F are disjoint bounded measurable sets. Then the value of $\int_{E \cup F} f$ is (d) $m(E \cap F)$ (c) mE - mF(b) m(E)m(F)(a) mE + mF(5) Let $f(x) = \sin x$ for $x \in [0, \pi]$. Then $\int_0^{\pi} f^{-1}$ is _____ (a) 1 (6) Let f be integrable over a measurable set E. Which of the following is not true? (a) $\int_E f \le \int_E |f|$ (b) $-\int_E f \le \int_E |f|$ (c) $|\int_E f| \le \int_E |f|$ (d) $|\int_E f| \ge \int_E |f|$ (7) Let $f(x) = x^2$ for all $x \in [0,1]$. Then the total variation of f over [0,1] is (b) 1 (a) 0 (8) Let $f:[a,b] \to \mathbb{R}$. Which of the following is true? (a) If f is bounded, then it is of bounded variation. (b) If f is continuous, then it is of bounded variation. (c) If f is differentiable, then it absolutely continuous. (d) If f' is bounded, then f is absolutely continuous. [14]Q.2 Attempt any Seven. (a) Show intersection of two σ - algebras on a set X is a σ - algebra. (b) Find the measure of the set $\{\pi + x : x \in \mathbb{R} - \mathbb{Q}\}.$ (c) If |f| is measurable over \mathbb{R} , then show that f need not be measurable. (d) If s and t are simple functions, then show that s + t is a simple function. (e) If a nonnegative measurable function f is integrable over a measurable set E, then

show that f is finite a.e. in E.

(f) If f is integrable over E and $\alpha \in \mathbb{R}$, then show that $\int_E \alpha f = \alpha \int_E f$.

(PT0)

- (g) Let $\{f_n\}$ be a sequence of nonnegative measurable functions defined on a measurable set E and $f_n \to f$ on E. If $f_n \le f$ for each n, then show that $\int_E f = \lim_n \int_E f_n$.
- (h) If f is of bounded variation on [a,b] and $\alpha \in \mathbb{R}$, then show that $T_a^b(\alpha f) = |\alpha| T_a^b(f)$.
- (i) Let $f:[0,1]\to\mathbb{R}$ be $f(x)=x^2$. Show that f is absolutely continuous.

Q.3

- (a) Let $A \subset \mathbb{R}$ and $\epsilon > 0$. Show that there is an open set O such that $A \subset O$ and $m^*O \leq [6]$ $m^*A + \epsilon$. Also, show that there is a G_δ set G such that $A \subset G$ and $m^*A = m^*G$.
- (b) Let f be an extended real valued function on a measurable set E. Show that f is [6] measurable if and only if $\{x \in E : f(x) < r\}$ is measurable for every $r \in \mathbb{Q}$.
- (b) If $\{E_n\}$ is a decreasing sequence of measurable subsets of \mathbb{R} and if $mE_1 < \infty$, then [6] show that $m(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} mE_n$.

Q.4

- (c) Let E be a measurable set of finite measure, and $\{f_n\}$ a sequence of measurable functions defined on E. Let f be a real valued function such that $f_n(x) \to f(x)$ for each x in E. Show that given $\epsilon > 0$ and $\delta > 0$, there is a measurable set $A \subset E$ with $mA < \delta$ and an integer N such that $|f_n(x) f(x)| < \epsilon$ for all $x \notin A$ and all n > N.
- (d) If φ and ψ are measurable simple functions vanishing outside a set of finite measure and if $a, b \in \mathbb{R}$, then show that $\int (a\varphi + b\psi) = a \int \varphi + b \int \psi$.

OR

(d) Let f be a real valued measurable function on E and $mE < \infty$. Show that for each $\epsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E such that f = g on F and $m(E - F) < \epsilon$.

Q.5

- (e) If f and g are integrable over a measurable set E, then show that f+g is integrable [6] over E and $\int_{E} (f+g) = \int_{E} f + \int_{E} g$.
- (f) Let E be a measurable set, and let f_n and f be measurable functions on E. Show [6] that $f_n \to f$ in measure on E if and only if $m\{x \in E : |f_n(x) f(x)| \ge \sigma\} \to 0$ as $n \to \infty$ for all $\sigma > 0$.
- (f) Let f be integrable over E. Show that for given $\epsilon > 0$, there is $\delta > 0$ such that $|\int_F f| < \epsilon$ whenever F is a measurable subset of E with $mF < \delta$.

Q.6

- (g) If f is absolutely continuous on [a, b] and f' = 0 a.e., then show that f is constant. [6]
- (h) Let f be an integrable function on [a, b], and let $F(x) = F(a) + \int_a^x f$ for all $x \in [a, b]$. [6] Show that F'(x) = f(x) for almost all x in [a, b].
- (h) If f is of bounded variation on [a, b] and a < c < b, then show that f is of bounded [6] variation on both [a, c] and [c, b]. Also, show that $T_a^b(f) = T_a^c(f) + T_c^b(f)$.

կնկկնկներ