			No. of printed pages: 2	
(SARDAR PATEI	L UNIVERSITY	Y	
$\mathbf{M.Sc}$. (Mathematics) Ser		nation	
	Saturday, 27 th PS02CMTH04, Fur	•	[
ime: 10:00 a.m. t			Iaximum marks: 70	
	he right indicate marks o al/standard notations wh		ion.	
1 Choose the most a	appropriate option for	each of the following	questions.	
	space is a/an			
(a) inner produ	ct (b) Hilbert	(c) Banach	(d) metric	
	llowing is not separable			
(a) ℓ^{∞}	(b) \mathbb{R}^n	× /	(d) none of these	
3. Let $H = \mathbb{R}^2$ be I	Hilbert space and $Y = \{$		Then $Y^{\perp} = \underline{\hspace{1cm}}$.	
(a) Y		(c) $\{(x(1),0)\in \mathbb{F}\}$	(c) $\{(x(1),0) \in \mathbb{R}^2\}$	
(b) {(0,0)}		(d) $\{(-x(1),0)\in$		
4. Let <i>H</i> be a Hilb number of best	ert space and $E \subset H$ by approximations from x	be non-empty, closed, $e \in H$ to E is	, and convex. Then the —·	
(a) 0	(b) 1	(c) 2	(d) infinite	
$\operatorname{self-adjoint}$.			oint. Then is	
(a) S^2T	(b) T^2S	(c) $S-T$	(d) $S + iT$	
6. Let H be a Hilbert	ert space, $T \in BL(H)$ l	be such that $\ker(T^*)$	$= \{0\}$. Then	
(a) $\ker(T) = \{0\}$	$\{b) \ R(T) = H$	(c) $R(T^*) = \{0\}$	(d) $\overline{R(T)} = H$	
7. Let <i>H</i> be a connumerical range	W(T) is		self-adjoint. Then the	
(a) {0}	(b) the unit circle	(c) a subset of \mathbb{R}	(d) R	
8. Let H be a Hill $\dim(H)$ is	bert space such that i		H is compact. Then	
(a) finite				

Q

- (a) State Pythagoras theorem for an inner product space.
- (b) Let X be a normed linear space. Show that $S_1(0) = \{x \in X : ||x|| < 1\}$ is convex.
- (c) Let H be a Hilbert space and $E \subset H$. Show that E^{\perp} is a subspace of H.
- (d) Compute the Gram matrix of $x_1 = (2, -1, -1)$, $x_2 = (0, 3, -3)$ and $x_3 = (1, 1, 1)$.
- (e) Let H be a Hilbert space and $T \in BL(H)$. If T is bounded below, then show that T is one-one.
- (f) Let H be a Hilbert space and $T \in BL(H)$. Show that $\ker(T) = \ker(T^*T)$.
- (g) Let H be a Hilbert space and $T \in BL(H)$. Show that ||Tx|| = ||x|| if and only if $T^*T = I$.

- (h) Define eigen spectrum of a bounded linear operator on a Hilbert space.
- (i) Let H be a Hilbert space and $T \in BL(H)$ be normal. Show that eigenvectors corresponding to distinct eigenvalues of T are orthogonal.
- Q-3 (a) State and prove Schwarz inequality.

[06]

(b) Show that the normed linear space $(\ell^p, \|\cdot\|_p)$ is an inner product space if and only if p=2.

[06]

OR

(b) State and prove Gram-Schmidt orthonormalization theorem.

[06]

Q-4 (a) State and prove Riesz-representation theorem.

[06]

(b) Let X be an inner product space, Y be a subspace of X, and $x \in X$. Show that $y \in Y$ is a best approximation from Y to x if and only if $(x - y) \perp Y$.

[06]

(b) State and prove unique Hahn-Banach extension theorem.

[06]

Q-5 (a) Let H be a Hilbert space and $T \in BL(H)$. Show that there is a unique $S \in$ BL(H) such that $\langle Tx,y\rangle=\langle x,Sy\rangle$ for every $x,y\in H$ and $\|S\|\leq \|T\|$.

[06]

(b) Let H be a Hilbert space and $T \in BL(H)$. If T is self-adjoint, then show that

|06|

$$||T|| = \sup\{|\langle Tx, x\rangle| : x \in H, \ ||x|| \le 1\}.$$

OR

(b) Let H be a Hilbert space and $T \in BL(H)$. If T is onto, then show that T^* is bounded below.

[06]

Q-6 (a) Let H be a Hilbert space and $T: H \to H$ be compact linear transformation. Show that T is bounded. Does the converse hold? Justify.

|06|

(b) Let H be a Hilbert space, $H \neq \{0\}$ and $T \in BL(H)$. If T is self-adjoint, then show that $m_T \in \sigma(T)$, where $m_T = \inf\{\lambda : \lambda \in W(T)\}$.

[06]

(b) Define Hilbert-Schmidt operator. Let H be a separable Hilbert space and T be a Hilbert-Schmidt operator on H. Show that T is compact.

[06]

