No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester II

PS0	M.Sc. Semes Thursday, 25 Oct 10.00 a.m. to 0 2CMTH03 – Differ	tober 2018 1.00 p.m. cential Geometry	Maximum Marks: 70	[0]
1 Choose the correct option for each of the following. 1) A Cartesian representation of the curve $\overline{\gamma}(t) = (\sin^2 t, \cos^2 t)$, $t \in \mathbb{R}$, is				[8]
$(a) x + y = 1 \tag{1}$	b) $x + y = 0$	(c) $x - y = 1$	(a) none or meso	
2) Let $a, b > 0$. Then the curve $\overline{\gamma}(t) = (a \sin t, b \cos t), t \in \mathbb{R}$, has infinitely many vertices if and only if				
(a) a = b (b) $a < b$	(9)	(d) $b = a + 1$	
(3) The equation of the tangent space to $x^2 + y^2 + z^2 = 1$ at the point $(0,0,1)$ is				
(a) $z = 0$	(b) $z=1$	(c) $x = 0$	(d) $y = 0$	
(4) Which of the following (a) $x^2 + y^2 - z^2 = 1$	ag is not a smooth solution $(b) x^2 + u^2 + z^2 =$	surface? $1 \text{ (c) } x^2 + y^2 = z$	(d) $x^2 + y^2 = z^2$	
• •			•	
(5) The image of the Ga(a) sphere	(b) hyperboloid	(c) paraboloid	(d) a point	
(6) The mean curvature $(a) -1$		(c) $\frac{1}{2}$	(d) 0	-
(7) Which of the following maps preserve Gaussian curvature?				•
(a) local diffeomorphism (c) diffeomorphism (d) None of the		ism se		
(8) The sum of interior angle of triangle on a surface of Gaussian curvature -1 is				
(a) $> \pi$	(b) $<\pi$	$(\dot{e}) = \pi$	(d) 2π	[14
	I a plane our	$\cos t$, $e^{kt} \sin t$) starting signed curvature.	ting at the point $(1,0)$. re $\kappa_s(s) = \frac{1}{1+s^2}$.	
			·	

- (d) Compute first fundamental form on $\sigma(u, v) = (\sinh u \sinh v, \sinh u \cosh v, \sinh u)$. (e) Compute the surface area of $\{(x, y, z) : x^2 + y^2 = 1, |z| \le 1\}$. (f) Let σ be a surface patch of an oriented surface with the unit normal $\overline{\mathbf{N}}$. Show that (g) Let $\overline{\gamma}$ be a unit-speed curve on an oriented surface S. Define normal curvature and $\overline{\mathbf{N}}_u \sigma_u = -L \text{ and } \overline{\mathbf{N}}_u \sigma_v = -M.$ geodesic curvature of γ . (h) Define Christoffel's symbols of second kind on a regular patch σ . (i) State Bonnet's Theorem. (a) Let $\overline{\gamma}$ be a unit-speed curve in \mathbb{R}^3 with nowhere vanishing curvature. Show that the Q.3curve $\overline{\alpha} = \overline{t}$ is a regular curve. Also, find curvature and torsion of $\overline{\alpha}$. (b) Let $\overline{\gamma}:(a,b)\to\mathbb{R}^2$ be a unit-speed curve, and let $s_0\in(a,b)$. Let $\varphi_0\in\mathbb{R}$ such that $\overline{\gamma}(s_0)=(\cos\varphi_0,\sin\varphi_0)$. Show that there exists a unique smooth map $\varphi:(a,b)\to\mathbb{R}$ such that $\dot{\gamma}(s) = (\cos \varphi(s), \sin \varphi(s))$ for all $s \in (a, b)$ and $\varphi(s_0) = \varphi_0$. (b) Let p and q be positive reals. Show that $\int_0^{2\pi} \sqrt{p^2 \sin^2 t + q^2 \cos^2 t} \, dt \ge 2\pi \sqrt{pq}$. Also, [6] show that equality holds if and only if p = q. (c) Define surface. Show that the set $\{(x,y,z)\in\mathbb{R}^3:z=x^2-4y^2\}$ is a surface. [6] Q.4(d) If a smooth map $f: S_1 \to S_2$ is a local isometry, then show that $\langle \cdot, \cdot \rangle_p = f^* \langle \cdot, \cdot \rangle_p$ on [6] $T_p S_1$ for all $p \in S_1$. [6] (d) Let S_1 , S_2 and S_3 be smooth surfaces. Prove the following statements. (A) If $p \in S_1$, then the derivative at p of the identity map from S_1 to itself is the (B) If $f: \mathcal{S}_1 \to \mathcal{S}_2$ and $g: \mathcal{S}_2 \to \mathcal{S}_3$ are smooth maps, then for all $p \in \mathcal{S}_1$, $D_p(g \circ f) =$ identity map from T_pS_1 to itself. $D_{f(p)}g \circ D_p f$. [6] Q.5(e) Compute the Gaussian curvature and mean curvature of $\sigma(u,v) = (f(u)\cos v, f(u)\sin v, g(u)), \text{ where } (\frac{df}{du})^2 + (\frac{dg}{du})^2 = 1.$ (f) Compute the principal curvatures and the principal vectors of $\sigma(u,v)=(u,v,u^2+v^2)$ [6] [6] at (0,0,0). (f) Show that the principal curvatures at a point of a surface are maximum and minimum values of the normal curvatures. Moreover, the principal vectors (directions) are the directions giving these maximum and minimum values.
 - Q.6 (g) If $\overline{\gamma}$ is a geodesic on the sphere $x^2 + y^2 + z^2 = 1$, then show that $\overline{\gamma}$ is part of a great [6] circle.
 - (h) Let σ be a surface patch of an oriented surface S. Show that $L_v M_u = L\Gamma_{12}^1 + [6] M(\Gamma_{12}^2 \Gamma_{11}^1) N\Gamma_{11}^2$ and $M_v N_u = L\Gamma_{22}^1 + M(\Gamma_{22}^2 \Gamma_{12}^1) N\Gamma_{12}^2$.
 - (h) If σ is a regular patch of an oriented surface, then show that $\sigma_{uu}\sigma_u = \frac{1}{2}E_u$, $\sigma_{uu}\sigma_v = [6]$ $F_u - \frac{1}{2}E_v$, $\sigma_{uv}\sigma_u = \frac{1}{2}F_v$, $\sigma_{uv}\sigma_v = \frac{1}{2}G_u$, $\sigma_{vv}\sigma_u = F_v - \frac{1}{2}G_u$ and $\sigma_{vv}\sigma_v = \frac{1}{2}G_v$.