SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

		M. Sc. (Semester)	II) Examination		
	-10 - 2016			Time: 10.00 T	o 1.00
-	MATHEMATICS				
Paper No	o. PS02CMTH05 –	(Methods of Partia	l Differential Equ	ations) Total Ma	ırks: 70
1.	Choose the correct	option for each que	stion:		[8]
(1)	The equation $(3D')$	$-2)^{2}(5DD^{\prime}+2D)z$	= 0 has (order, deg	ree) =	
•	(a) (3, 1)	(b) (1, 3)	(c)(4,1)	(d)(4,2)	•
(2)	The equation $p^2 + q$	$q^2 = 0$ is same as $F(I)$	D, D')z = 0 where F	(D, D') is	
	(a) $(D + D')^2$	(b) $(D^2 + D^{/2})$.	(c) $D^2D' + D'^2D$	(d) none of these	
(3)	Which of the following equation is reducible?				
٠	(a) $3D^2 + 2D'$	(b) D^2D'	(c) $1 + DD'$	(d) $D' - 2D + D'^2$	
(4)	The equation (5yD	$^2 - xDD' + 2y)z = 0$) is parabolic on	v v v v v v v v v v v v v v v v v v v	
	(a) Y-axis only	(b) X-axis only	(c) empty set	(d) R^2	
(5)	Which of the following equation can be solved by general method?				
	(a) $2r - 3s = 0$	(b) $x^2r - y^2s = 0$	$(c) x^2 r + xyt = 0$	$(d) 3xr - y^2t$	
(6)	The equation $r + s$	+t=1 cannot be so	lved by		
•	(a) General metho	od . ·	(b) Monge's meth	nod	
	(c) Polynomial me	ethod	(d) changing u =	logx, v = logy	
. (7)	The solution of Di	richlet BVP (if exist	ts) is	•	
	(a) 0	(b) unique .	(c) not unique	(d) none of these	
(8)	The one dimension	al Diffusion equation	on is		
	(a) $u_{xx} + u_{yy} = 0$	(b) $u_{xx} = \frac{1}{\nu} u_{tt}$	(c) $u_{xx} = \frac{1}{h} u_t$	(d) none of these	
2.	Attempt ANY SEV		κ.		[14]
(a)	Define complemen	tary function and pa	rticular integral of	the equation.	٠.
(b)	Eliminate functions f and g and obtain a pde: $u = f(x + iy) + g(x - iy)$.				
(c)	Write the equation into $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ form: $D(2D^2 + D^2) = 0$.				
(d)	Find $DD'z$, if x and y in $z = z(x, y)$ is replaced by $u = \log x$ and $v = \log y$.				٠
(e)	Classify region in which equation $(2xr + yt - 2yq + xp)z = 0$ is hyperbolic.				
(f)	Write the Diffusion equation in cylindrical co-ordinate system.				
(g)	Give one examples	s of an irreducible ed	quation of order 3.		
(h)	State Green's Iden	tity.	•		
(i)	What is Neumann	s boundary value pr	oblem?		

If $(\beta D' + \gamma)^2$ is a factor of F(D, D'), then prove that $e^{-\beta'} [\phi_1(\beta x) + y\phi_2(\beta x)]$ is a solution of F(D, D')z = 0, where φ_1 and φ_2 are arbitrary functions of a single variable ξ. [6] Find the general solution of ANY ONE of the following equations: (i) $(D^2 - D'^2 - 3D + 3D')z = x + 2y + e^{(x+2y)}$. (ii) $(D + 3D')(2D - D' + 1)z = \cos(x - y)$. Convert the equation into canonical form: $4r - y^6t = 3y^5q$. [6] (b) Using Monge's method, solve ANY ONE of the following equations: [6] (ii) $z(qs - pt) = pq^2$. (i) 4r - 9t = 0. Find the general solution of equation: $(x^2D^2 + 2xyDD' + xD)z = xy$. [6] Solve the Wave equation in Cartesian coordinates, by method of separation [6] variable and show that solution is $\psi(x,y,z,t) = e^{\pm i (lx + my + nz + kct)}$ where l, m, n and k are constants with $l^2 + m^2 + n^2 = k^2$ (b) By separating the variables, find the solution of three dimensional Laplace [6] equation in cylindrical coordinate system. [6]State and prove Maximum principle. [6] Solve interior Dirichlet problem for a function $\phi = \phi(r,\theta)$ for circle and show that solution is of the form $\phi(r,\theta)=\sum^{\infty}r^n\left(A_n\cos n\theta+B_n\sin n\theta\right)$, with A_n,B_n are constants.

X-X-X-X-X-X

[6]

Define equipotential surfaces and show that the family of surfaces

 $x^2 + y^2 + z^2 = c^2$ can form an equipotential family of sufaces.