(34 & A-4) Seat No.:____

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester II

Saturday, 22 October 2016 10.00 a.m. to 1.00 p.m. PS02CMTH03 – Differential Geometry						
				Maximum Marks: 7	0	
	Choose the correct op A Cartesian represent		[8]			
	(a) $x + y = 1$	(b) $x + y = 0$	(c) $x - y = 1$	(d) $x-y=0$		
(2)	Which of the following curves has exactly four vertices?					
	(a) $x^2 + y^2 = 1$	(b) $x^2 + y^2 = 4$	(c) $x^2 + y^2 = 9$	(d) $\frac{x^2}{16} + \frac{y^2}{25} = 1$		
(3)	Which of the following surfaces is not a smooth surface?					
	(a) cone	(b) sphere	(c) cylinder	(d) plane		
(4)	The equation of the tangent plane to $x^2 + y^2 = 1$ at $(1,0,0)$ is					
	(a) $x = 0$	(b) $x^2 = 1$	(c) $x = -1$	(d) $x = 1$		
(5)	The Gauss map is an identity map on					
	(a) sphere	(b) hyperboloid	(c) paraboloid	(d) plane		
(6)	The Gaussian curvature on the sphere of radius 1 is					
	(a) -1	(b) 1	(c) $\frac{1}{2}$	(d) 0		
(7)	Which of the following theorem is analogous the fundamental theorem of curve theory?					
	(a) Theorema Egregium(b) Bonnet's theorem		(c) Gauss - Bonnet theorem(d) None of these			
(8)	The geodesic curvature of the curve $\overline{\gamma}(t) = (t, -t, 0)$ on the surface $z = y^2 - x^2$ is					
	(a) 0	(b) 1	(c) 2	(d) 3		
(a) (b) (c) (d) (e)	(1)				[14]	
	1					

- (g) Compute the Second Fundamental form on $\sigma(u, v) = (u, v, u + v)$.
- (h) State the Bonnet's theorem.
- (i) Show that any geodesic on a surface has a constant speed.

Q.3

(a) State and prove Isoperimetric Inequality.

[6]

(b) Define reparametrization of a parametrized curve $\overline{\gamma}:(a,b)\to\mathbb{R}^n$. Show that a reparametrization of a regular curve is regular.

OR

(b) Define signed curvature of a unit-speed curve $\overline{\gamma}:(a,b)\to\mathbb{R}^2$. If $k:(a,b)\to\mathbb{R}$ is a smooth map, then show that there is a unit-speed curve $\overline{\gamma}:(a,b)\to\mathbb{R}^2$ whose signed curvature is k.

Q.4

(c) Define surface. Show that the set $\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ is a surface.

[6]

(d) Let S_1 and S_2 be two smooth surfaces. Let $f: \mathcal{S}_1 \to \mathcal{S}_2$ be a smooth map. If $f^*\langle v, w \rangle_p = [6] \langle v, w \rangle_p$ for all $p \in S_1$ and $v, w \in T_pS_1$, then show that f is a local isometry.

OR

- (d) (i) Let $f: \mathcal{S}_1 \to \mathcal{S}_2$ be a local diffeomorphism, and let $\overline{\gamma}$ be a regular curve in S_1 . Show [3] that $f \circ \gamma$ is a regular curve in S_2 .
 - (ii) Compute the surface area of $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z > 0\}$. [3]

Q.5

- (e) Define Weingarten map. Let $\sigma: U \to \mathbb{R}^3$ be a surface patch of an oriented surface \mathcal{S} , and let p be in the image of σ , i.e., $p = \sigma(u, v)$ for some $(u, v) \in U$. Show that the matrix of W_p with respect to the basis $\{\sigma_u, \sigma_v\}$ of $T_p\mathcal{S}$ is $\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}$.
- (f) Compute the principal curvatures and the principal vectors of $\sigma(u, v) = (u, v, v^2 u^2)$ at [6] (0, 0, 0).

OR

(f) State and prove Euler's Theorem. Hence deduce that principal curvatures at a point of a surface are maximum and minimum values of the normal curvatures and the principal vectors (directions) are the directions giving these maximum and minimum values.

Q.6

- (g) Determine geodesics on the unit sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. [6]
- (h) Let σ be a surface patch of an oriented surface S. Then show that $L_v M_u = L\Gamma_{12}^1 + M(\Gamma_{12}^2 \Gamma_{11}^1) N\Gamma_{11}^2$ and $M_v N_u = L\Gamma_{12}^1 + M(\Gamma_{22}^2 \Gamma_{12}^1) N\Gamma_{12}^2$.

OF

(h) State Gauss-Bonnet Theorem. Express the Christoffel's symbols Γ_{11}^1 and Γ_{11}^2 in terms of E, [6] F, G and their partial derivatives.

հնհենեններ

