No of printed pages: 2 Seat No.___ Sardar Patel University [17/A-1] M.Sc. Semester II Examination 2016 Saturday, 29 October 10.00 to 200 Mathematics: PS02CMTH02 (Algebra I) Maximum Marks: 70 Q.1 Write the correct option number only for each question. [8] (a) ____ has exactly 4 invertible elements. (iv) $\mathbb{Z}_8[x]$ (iii) $\mathbb{Z}_6[x]$ (ii) **Z**₇ (i) **Z** (b) _____ is not an integral domain. (iv) Q (iii) \mathbb{Z}_4 (i) 4Z (c) $x^2 - 2$ is irreducible over _____ (ii) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ (iv) \mathbb{R} (iii) C (d) The field $\mathbb{R}[x]/\langle x^2+1\rangle$ is isomorphic to _____. (ii) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ (iii) \mathbb{C} (iv) ℝ (e) $x^5 + x^2 + x + 1 = (x^3 + x + 1)(x^2 + 1)$ is true in _____. (ii) $\mathbb{Z}_3[x]$ (iii) $\mathbb{Z}_2[x]$ (iv) $\mathbb{Z}[x]$ (i) no field (f) $[\mathbb{C}:\mathbb{R}] = \underline{\hspace{1cm}}$ (iv) ∞ (iii) 4 (ii) 3 (i) 2 (g) The set of all real numbers, which are algebraic over $\mathbb Q$ is _____ (iv) empty (iii) uncountable (ii) finite (i) countable (h) The degree of the splitting field of $x^3 - 1 \in \mathbb{Q}$ over \mathbb{Q} is _____ (iv) 4 (iii) 3 (ii) 2 (i) 1 [14]Q.2 Attempt any Seven. (Start a new page.) (a) Define a Euclidean ring and give one example of the same. (b) Define the term: associates and give an example of the same. (c) State Eisenstein theorem. (d) For $a, b \in \mathbb{Q}$, when is $a + b\sqrt{2}$ invertible in $\mathbb{Q}(\sqrt{2})$? In that case, find $c, d \in \mathbb{Q}$ such that $c + d\sqrt{2} = (a + b\sqrt{2})^{-1}$. (e) Find the quotient and remainder when $x^4 + 3x^3 + 2x^2 + x + 1$ is divided by $x^2 - 2x - 1$ in $\mathbb{Z}_5[x]$. (f) Define the terms: extension field and algebraic extension. (g) Show that π is algebraic over \mathbb{R} . (h) Define the term: solvable group and give one example of the same. (i) Define the term: symmetric rational function. [Contd...]

G	0.3 (Start a new page.)	
(a) If a, b are elements of a Euclidean ring, then show that their gcd exists.	[6]
(b) If π is a prime element in the Euclidean ring \mathcal{R} and $\pi \mid ab$, where $a, b \in \mathcal{R}$, then show	[6]
	that $\pi \mid a \text{ or } \pi \mid b$.	ر
	OR	
(b) If p is a prime integer of the form $4n+1$, then show that $p=a^2+b^2$ for some $a,b\in\mathbb{Z}$.	[6]
Q	9.4 (Start a new page.)	
(c) Show that product of two primitive polynomials is a primitive polynomial	[6]
(d) Find all irreducible polynomials of degree less or equal to 3 in $\mathbb{Z}_2[x]$.	[6]
	OR	[0]
(d) Show that $x^5 + 2x + 4$ is irreducible in $\mathbb{Q}[x]$.	[6]
Q	.5 (Start a new page.)	
	e) Prove the existence of a real number, which is not algebraic over Q.	[6]
(.	f) If K is an extension field of a field F and $a \in K$, then describe the internal construc-	[6]
	tion of $F(a)$.	[6]
	OR	
(j	f) Let F be a field and $f(x) \in F[x]$ be nonconstant. Prove the existence of a field	[6]
	containing at least one root of $f(x)$	[-]
Q	.6 (Start a new page.)	
	(a) Let K be a normal extension of F, H be a subgroup of $G(K, F)$ and K_{T} be a fixed	[6]
	neid of H. Then show that (1) $ K:K_H = o(H)$ and (ii) $G(K,K_H) = H$	[0]
(1	i) If K is a finite extension of F, then show that $o(G(K,F)) \leq [K:F]$	[6]
	OR	
(7	n) In usual notations prove that $[F(x_1, x_2,, x_n) : S] = n!$.	[6]
	፟ ች‡ቝ‡ቝ‡ቝ	
	(\mathcal{S})	