(17 & A-7) Seat NO: ____

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester II

Tuesday, 18 October 2016

10.00 a.m. to 1.00 p.m.

PS02CMTH01 - Real Analysis I

Maximum Marks: 70

			Ľ	Viaximum Marks: 70			
Q.1 (1)	Fill in the blanks. The Lebesgue measu	re of [-1, 1) is	• • • • • • • • • • • • • • • • • • •		[8]		
	(a) 2	(b) 3	(c) 4	(d) none of these			
(2)	The Lebesgue integral of a nonnegative measurable function over $\mathbb Q$ is						
	(a) 1	(b) 2	(c) ∞	(d) none of these			
(3)	Let E be the set of irrationals in $[-1,1]$. Then $\int_{[-1,1]} \chi_{E^c} =$						
	(a) 1	(b) 0	(c) 2	(d) ∞			
(4)	4) The value of $\lim_{n\to\infty} \int_{[3,9]} \frac{nx}{1+nx} dx = $						
	(a) 2	(b) 3	(c) 6	(d) none of these			
(5)	5) Fatou's Lemma can be obtained by making use of						
	(a) BCT	(b) LDCT	(c) MCT	(d) none of these			
(6)	The outer measure m^* fails to have the property						
	(a) monotone (b) m^* is countably subadditive		(c) translation inva (d) none of these	ariant			
(7)	(7) Let $X = \{1, 2, 3\}$. Then the σ - algebra generated by $\{\{1\}\}$ contains number of elements.						
	(a) 2 (b) 4		(c) 6 (d) none of these				
(8)	 (a) f is measurable, f = g a.e. imply g is measurable. (b) f is continuous, f = g a.e. mean g is continuous. (c) f is integrable, f = g a.e. imply g is integrable. (d) none of these 						
	(4) 110110 01 011000			(P.T.O.)			

	Attempt any Seven. Show that $P^b(f) + N^b(f) - T^b(f)$	[14					
	Show that $P_a^b(f) + N_a^b(f) = T_a^b(f)$. Using a well-known result show that $m^*(\mathbb{Q}) = 0$.						
	If f is increasing on $[a, b]$, then show that $f \in BV[a, b]$.						
٠,,	If $ f $ is integrable and f is measurable, then show that f is integrable.	,					
` '	If f is measurable, then show that f^+ and f^- are measurable.						
`	Obtain BCT from LDCT.						
(g)	Show that a set having outer measure zero is measurable.						
(h)	If f and g are absolutely continuous on $[a, b]$, then show that $f + g$ is absolutely continuous on $[a, b]$.						
(i) Q.3	Suppose that $f = g$ a.e. on E . Then show that $\int_E f = \int_E g$.						
-	Suppose f is integrable on $[a, b]$. Then show that the indefinite integral of f is a continuous function of bounded variation.	[6]					
(b)	State and prove the Fundamental Theorem of Integral Calculus for an integrable function.	[6]					
	OR						
(b)	Show that every absolutely continuous function is the indefinite integral of its deriv-	[6]					
(-)	ative.						
Q.4							
(c)	Prove that without loss of generality any sequence of sets in an algebra can be con-	[6]					
	sidered to be a sequence of disjoint members. Prove that outer measure of a finite closed interval is its length.						
(d)	Prove that outer measure of a finite closed interval is its length. OR						
(d)	If $\{f_n\}$ is a sequence of measurable functions, then show that $\inf_n f_n$ and $\sup_n f_n$ are measurable and hence show that limit of f_n is measurable.	[6]					
Q.5							
(e)	Show that $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$ if f and g are nonnegative measurable functions and $\alpha, \beta \geq 0$.	[6]					
(f)	Prove that the Lebesgue integral of a nonnegative measurable simple function generates a measure.	[6]					
	OR						
(f)	State and prove Bounded Convergence Theorem. Explain its meaning.	[6]					
Q.6							
(g)	Suppose $\{f_n\}$ is a sequence of measurable functions defined on a measurable set E and $f_n \to f$ a.e. on E . Then when does $\int_E f_n \to \int_E f$? Justify the answer.	[6]					
(h)	State and prove MCT. Illustrate it by an example.	[6]					
(11)	OR	Į ^O .					
(h)	Show that the Lebesgue integral is linear.	[6]					
	ենկնինկնին						
$\widehat{2}$							

[14]