

1

SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

Date: 30-03-2019, Saturday

Time: 10.00 To 1.00 p.m.

Subject: MATHEMATICS Paper No. PS02EMTH21 - (Graph Theory - I)

No. of printed pages: 2

	•				Total Marks: 7	/0	
1.		Choose the corre	ct option for each qu	estion:		[8]	
	(1)	1) The radius of the graph $K_{1,n}$ (n > 1) is					
		(a) 1	(b) 2	(c) n	(d) $n + 1$		
	(2)	A balanced digraph is					
:		(a) Euler	(b) connected	(c) symmetric	(d) none of these		
	(3)	Let T be a spanning in-tree with root R. Then					
	` ′	(a) $d^{-}(R) = 0$	(b) $d^{-}(R) > 0$	(c) $d^{+}(R) > 0$	(d) none of these		
	(4)	If G is a simple digraph with vertices $\{v_1, v_2,, v_n\}$ & e edges, then $\sum_{i=1}^n d^+(v_i)$					
		(a) ne	(b) 2e	(c) e	(d) e^2		
	(5)	Which of the following graphs is not uniquely colourable?					
		(a) P ₇	(b) C ₇	(c) K ₇	(d) K _{3,4}		
	(6)	6) Which of the following graphs is Hamiltonian?					
		(a) P _{3n}	(b) $K_{n,2n}$	(c) C _{3n}	(d) none of these		
	(7)	7) Let G be a simple graph without isolated vertex. Then a matching M in G is					
		(a) maximum ⇒ maximal(c) maximum ⇒ perfect		(b) maximal ⇒ maximum(d) maximal ⇒ perfect			
	(8)	8) If $G = K_{3,n}$, then $\beta'(G) =$					
		(a) 3	(b) n	(c) $min{3, n}$	(d) $\max\{3, n\}$		
2.		Attempt any SEV	'EN:			[14]	
	(a)	Prove: If $K_{m,n} = K_{m+n}$, then $m = n = 1$.					
	(b)						
	(c)	Prove or disprove: Every connected digraph has a spanning out-tree.					
	(d)	Define fundamental circuit matrix in a digraph.					
	(e)	Prove: If $G = C_n$ and n is odd, then $\chi(G) = 3$.					
	(f)	Show that the condition $\kappa(G) \ge \alpha(G)$ is not necessary for a graph $G(G \ne K_2)$ to					

(g) Prove: The graph C_4 is isomorphic to $K_{2,\,2}$.

be Hamiltonian.

- (h) Prove: If $S \subset V(G)$ is a vertex cover, then V(G) S is an independent set, in G.
- Define M-alternating and M-augmenting path (M is a matching) and give one example of each. (P.T.O.)

3.	(a)	Define the following digraphs with examples:	[6]
		(i) Asymmetric (ii) complete asymmetric (iii) Symmetric (iv) complete symmetric.	
	(b)	Prove that if G is connected Euler digraph, then it is balanced.	[6]
	ber. • •	OR	
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2,, v_n$ such that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2, n$.	[6]
4.	(a)	Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G without self-loop. Then prove that $AB^{T} = 0$.	[6]
,	(b)	Define arborescence and prove that an arborescence is a tree in which every vertex other than the root has an in-degree exactly one. OR	[6]
	(b)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is $1, -1$ or 0 .	[6]
5.	(a)	Prove: If G is a simple, planer graph, then $\chi(G) \leq 5$.	[6]
	(b)	Prove: If G is a simple graph with n vertices and $2\delta(G) \ge n \ge 3$, then G is Hamiltonian	[6]
		OR	
	(b)	Find the coefficients c ₃ and c ₄ of chromatic polynomial of graph C ₅ .	[6]
6.	(a)	Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.	[6]
	(b)	State Hall's theorem and show that a k-regular bipartite graph has a perfect matching.	[6]
		OR	
	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = C_9$.	Г 6 1

X-X-X-X-X