NO. OF PRINTED PAGES: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Semester-II) Examination March-2019

Saturday 30/03/2019

Time: 10:00 AM to 01:00 PM

Subject: Mathematics

Course No.PS02EMTH04

Mathematical Classical Mechanics

	lylatic matical Glassica.	
Note: (1)	All questions (including multiple choice questions) are to be answered in the answer book of Numbers to the right indicate full marks of the respective question.	nly.
Q-1 (1) (2) (3) (4)	Choose most appropriate answer from the options given. For the motion of a particle on a sphere of constant radius constraints are (a) holonomic and scleronomic (b) holonomic and rheonomic (c) non-holonomic and scleronomic (d) non-holonomic and rheonomic Degrees of freedom for a simple pendulum is (a) 5 (b) 3 (c) 1 (d) 0 For a particle of mass m at height h , potential energy is given by (a) mgh (b) $-mgh$ (c) $mgl\cos\theta$ (d) none of these What are geodesics on a plane? (a) straight lines (b) helix (c) great circles (d) large circles	(08)
(5)	$\int_{t_1}^{t_2} L dt \text{ is called} $ (b) action integral	
	(a) Lagrangian integral	
(6)	Which one of the following is correct?	
(0)	(a) Lagrangian is conserved (b) Hamiltonian is conserved	
	(c) $\frac{dH}{dt} = -\frac{\partial H}{\partial t}$ (d) none of these	
(7)	If M is Jacobian matrix for a canonical transformation then (a) M is Identity (b) $ M = \pm 1$ (c) $MJM^{-1} = J$ (d) M is singular	(14)
Q-2	Answer any Seven.	(14)
(1	 What is a simple pendulum? Describe constraints for a simple pendulum. State Lagrange's equations of motion in case of velocity dependent potential. 	
(3	State Hamilton's principle.	
(4	1 1 1 continue contracte to a cyclic coordinate is	
(5	conserved	
(6	O State matrix form of Hamilton's equations of motion.	
·	7) State transformation equations for a generating function of type r_1 .	
(What are fundamental Poisson brackets?	
(9) Show that $\frac{du}{dt} = [u, H] + \frac{\partial u}{\partial t}$, the notations being usual.	(P.T.

(a) Lagrangian for a system is given by L. Show that $L' = L + \frac{dF(q_1, q_2, ..., q_n, t)}{dt}$ (06)also satisfies Lagrange's equations of motion. Obtain Lagrange's equations of motion for a particle moving in XY-plane (06)in plane polar coordinates. OR Obtain expression of kinetic energy in terms of generalized coordinates for a double pendulum. Q-4 Derive the condition for the extremum for $J = \int_{x_1}^{x_2} f(y, \dot{y}, x) dx$ (06)Define energy function. Explain how it is related with total energy of a (06)system. OR (b) Using calculus of variations solve the brachistochrone problem. Q-5 (a) Using Legendre transformation derive Hamilton's equations of motion (06)from Lagrange's equations of motion. (b) Discuss principle of least action. (06)(b) Lagrangian for a system is given by $L = \frac{l_1}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{l_3}{2} (\dot{\psi} + \dot{\phi} \cos \theta)^2,$ obtain Hamilton for the system. Q-6 State and prove Jacobi's identity for Poisson brackets. (06)(b) For a system of one degree of freedom Hamiltonian is $H = \frac{p^2}{2} - \frac{1}{2}q^2$. (06)Show that $u = \frac{pq}{2} - Ht$ is a constant of motion.

(b) Determine whether the transformation $Q_2 = p_2$, $P_2 = -2q_1 - q_2$ $Q_1 = q_1, P_1 = p_1 - 2p_2$ is canonical. ****