SEAT No._

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

Date: 30-03-2019 , Saturday

Time: 10.00 To 1.00 p.m.

Subject: MATHEMATICS

Paper No. PS02EMTH02 - (Graph Theory - I)

					l otal Marks:	70		
1.		Choose the corre	ct option for each qu	estion:		[8]		
	(1)	The radius of K_n ($n > 3$) is						
		(a) 1	(b) 2	(c) n	(d) 0			
	(2)	A symmetric dig	raph is	•				
		(a) Euler	(b) connected	(c) balanced	(d) regular			
	(3)	Let T be a spann	ing in-tree with root l	R. Then				
		(a) $d^{-}(R) = 0$	(b) $d^{-}(R) > 0$	(c) $d^{+}(R) > 0$	(d) none of these			
	(4)							
		(a) n	(b) $n - 1$	(c) 1	(d) 0			
	(5)	5) The coefficient c ₅ in chromatic polynomial of K ₅ is						
		(a) 5^5	(b) 5^2	(c) 5	(d) 5!			
	(6)							
		(a) P _{3n}	(b) K _{n, 2n}	(c) C _{3n}	(d) none of these			
	(7)							
		(a) maximal ⇒	perfect	(b) maximum ⇒ maximal(d) none of these				
		(c) maximum =	•					
	(8)	3) If $G = K_{3,n}$, then $\alpha'(G) = \underline{\hspace{1cm}}$.						
		(a) 3	(b) n	(c) min{3, n}	(d) max{3, n}			
2.		Attempt any SEV	VEN:			[14]		
	(a)	Find the diameter of $K_{1,n}$ ($n > 1$).						
	(b)	Prove or disprove: An Euler digraph is connected.						
	(c)	Give an example of a spanning in tree which is also a spanning out tree in a						
		digraph.						
	(d)							
	(e)	Prove: If G is a bipartite graph, then $\chi(G) = 2$.						
	(f)	What is Four color problem?						
	(g)	Prove or disprove: The graph C_4 is isomorphic to $K_{2,2}$.						
	(h)	Prove: If $S \subset V(G)$ is a vertex cover, then $V(G) - S$ is an independent set, in G .						

Define an edge cover of a graph and give one example of it.

(i)

3.	(a)	Define the following with examples:					
		(i) In-degree (ii) Out-degree (iii) Balanced digraph (iv) Regular digraph	[6]				
	(b)	Prove that if G is a connected Euler digraph, then it is balanced.					
		OR					
	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.					
4.	(a)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is $1, -1$ or 0 .					
	(b)	vertex other than the root has an in-degree exactly one.					
	(b)	OR Define the following with assembles:	F 45				
	(0)	Define the following with examples: (i) out-tree & spanning out-tree (ii) in-tree & spanning in-tree.	[6]				
5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \leq S $.					
	(b)	Let G be a connected graph. Prove that $\chi(G) = 2$ if and only if G does not contain an odd cycle.					
		OR					
	(b)	Find the coefficients c ₂ and c ₃ of chromatic polynomial of graph K _{2, 2} .	[6]				
5.	(a)	Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.					
	(b)	State Hall's theorem and show that a k-regular bipartite graph has a perfect matching.					
		OR					
	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = P_7$.	[6]				

X-X-X-X-X