56

[08

[14]

[100]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - II Examination Tuesday, 26th March, 2019

PS02CMTH24, Functional Analysis - I

Time: $10:00$ a.m. †	to	01:00	p.m.
---------------------------------	----	-------	------

Maximum marks: 70

Note: (1) Figures to the right indicate marks of the respective question.

(2) Here H denotes the Hilbert space over the field K, where K is \mathbb{R} or \mathbb{C} , and I denotes identity operator. Assume other usual/standard notations wherever applicable.

	<i>v</i> -		•	* *		
1 V	Vrite the most appro	priate option only fo	r each of the follow	ing questions.		
1.	space is _	space.				
	(a) A topological, a metric		(c) A normed linear, an inner product			
	(b) A metric, a normed linear		(d) An inner product, a metric			
2.	is not an inner product space.					
	(a) \mathbb{R}^6	(b) c_{00}	(c) ℓ^{∞}	(d) $C[0,1]$		
3.	$(1,0,3)$ is not a best approximation from $\mathbb{R} \times \{0\} \times \mathbb{R}$ to					
	(a) $(0, -2, 0)$	(b) $(1,2,3)$	(c) $(1,-1,3)$	(d) $(1,0,3)$		
4.	If $\{u_n\}$ is an orthonormal basis of an infinite-dimensional Hilbert space, then					
	(a) $ u_n \to \sqrt{2}$	(b) $u_n \to 0$	(c) $u_n \xrightarrow{w} 0$	(d) $\{u_n\}$ is Cauchy		
5.	If S is self-adjoint, $\alpha \in \mathbb{C}$ with imaginary part $\operatorname{Im} \alpha$, then is self-adjoint.					
	(a) $i\alpha S$	(b) $(\operatorname{Im} \alpha)S$	(c) $\bar{\alpha}S$	(d) $-i(\operatorname{Im}\alpha)S$		
6.	If $T \in BL(H)$ is bounded below, then					
	(a) T is regular	(b) T^* is one-one	(c) T is onto	(d) T^* is onto		
7.	Let $T \in BL(\mathbb{C}^5)$ be a projection. Then $\sigma_a(T) =$					
		(b) R		(d) Ø		

Q-2 Attempt any seven of the following.

(a) $\lambda \notin \sigma_e(T)$

(a) Let X be an inner product space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $||x_n - x|| \to 0$ and $||y_n - y|| \to 0$, then show that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

(b) $\lambda \notin \sigma_e(T)$ (c) $\lambda \notin \sigma(T)$ (d) $\lambda \in \sigma_e(T)$

(b) State and prove Parallelogram law for an inner product space.

8. Let H be a Hilbert space and $T \in BL(H)$. If $\lambda \notin W(T)$, then _____.

- (c) Define uniformly convex normed linear space
- (d) State projection theorem.
- (e) Show that a bounded subset E of a Hilbert space H is weakly bounded.
- (f) Let H be a Hilbert space and $S, T \in BL(H)$. Show that $(S+T)^* = S^* + T^*$.
- (g) Let H be a Hilbert space and $T \in BL(H)$ be isometry. Show that $T^*T = I$.
- (h) Give an example of a Hilbert-Schmidt operator on a separable Hilbert space.
- (i) Let H be a Hilbert space. For $T \in BL(H)$ show that $\lambda \in \sigma(T)$ if and only if $\bar{\lambda} \in \sigma(T^*)$.

- Q-3 (a) State and prove Schwarz inequality. When does the equality hold? Justify.
- [06]

[06]

(b) Let X be an inner product space and $\{u_1, u_2, ...\}$ be a countable orthonormal subset of X. Then prove that for each $x \in X$,

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$
 if and only if $x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$.

OR

(b) Let X be a normed linear space over K where the norm satisfies parallelogram [06] law. For all $x, y \in X$, define $\langle \cdot, \cdot \rangle : X \to K$ by

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2).$$

Prove that $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$.

- Q-4 (a) Let H be a Hilbert space over K. Prove that $f: H \to K$ is continuous linear if and only if there exists $y \in H$ such that $f(x) = \langle x, y \rangle$ for all $x \in H$.
 - (b) Let X be an inner product space, Y be a subspace of X and $x \in X$. Prove that $y \in Y$ is a best approximation from Y to x if and only if $(x y) \perp Y$.

OR

- (b) Let *H* be a Hilbert space. Show that every bounded sequence in *H* has a weakly convergent subsequence. [06]
- Q-5 (a) Let H be a Hilbert space and $T \in BL(H)$. Prove that there exists a unique $S \in BL(H)$ such that $\langle Tx, y \rangle = \langle x, Sy \rangle$ for every $x, y \in H$.
 - (b) Let H be a Hilbert space and $T \in BL(H)$ be self-adjoint. Prove that $\langle Tx, x \rangle = 0$ [06] for all $x \in H$ if and only if T = 0.

OR

(b) Give an example with proper verification of each of the following.

[06]

[06]

- 1. A unitary operator which is not self-adjoint.
- 2. A self-adjoint operator which is not unitary.
- Q-6 (a) Let $T \in BL(H)$. Prove that $\sigma(T) = \sigma_a(T) \cup \{\bar{\mu} \mid \mu \in \sigma_e(T^*)\}.$
 - (b) Let H be a Hilbert space and $T: H \to H$ be linear. Prove that if T is compact, then it is bounded. Does the converse hold? Justify.

OR

(b) Let H be a Hilbert space and $T \in BL(H)$. Prove that T is compact if and only if T^* is compact.

