No. of Printed Pages:

Sardar Patel University

M.Sc. (Mathematics) (Semester-II); Examination 2019

PS02CMTH23: Differential Geometry

Date: 23rd March, 2019

Full Marks: 70

Saturday

Time: 10:00 am to 01:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Assume usual/standard notations wherever applicable.
- 3. Figures to the right indicate full marks.
- **Q-1** Choose the most appropriate option for each of following question:

[8]

- A parametrization of a parabola $y = x^2$ is
 - (a) (t^4, t^8) , $t \in R$ (b) (t^2, t^4) , $t \in R$ (c) (\sqrt{t}, t) , $t \in R$ (d) (t, t^2) , $t \in R$
 - (ii) Equality holds in Isoperimetric Inequality if and only if
 - (a) $\overline{\gamma}$ is a Parabola (b) $\overline{\gamma}$ is an Ellipse (c) $\overline{\gamma}$ is a Hyperbola (d) $\overline{\gamma}$ is a Circle
 - (iii) A surface patch of Cylinder $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ is given by
 - (a) $\sigma(u,v) = (u, v, u^2 + v^2)$ (b) $\sigma(u,v) = (\cos u, \sin u, v)$

 - (c) $\sigma(u,v) = (\cos u, \sin v, v)$ (d) $\sigma(u,v) = (\cos v, \sin u, v)$
 - (iv) If a local isometry is diffeomorphism itself called
 - (a) a local isometry (b) an isometry (c) homeomorphism (d) conformal
 - (v) The second fundamental form at p is a
 - (a) bilinear map (b) linear map
- (c) nonlinear map
- (d) Gauss map
- $z = \frac{1}{2}(k_1x^2 + k_2y^2)$ where k_1 and k_2 are principal curvatures then this equation (vi)

represents Elliptic paraboloid if

- (a) $k_1 = k_2 = 0$ (b) $k_1, k_2 < 0$ (c) $k_1, k_2 > 0$ (d) $k_1 > 0, k_2 < 0$
- $2\sigma_{m}\sigma_{n} =$ (vii)

- (a) G_n (b) F_n (c) E_n (d) E_v
- (viii) The sum of the interior angles of a Triangle on a Sphere is
 - (a) $< \pi$
- (b) 2π
- (c) $=\pi$ (d) $>\pi$

[6]

- (a) Prove that if $\bar{\gamma}$ is a unit-speed curve then $\dot{\bar{\gamma}} \perp \ddot{\bar{\gamma}}$
- (b) State Frenet-Serret theorem.
- (c) Prove that composition of two conformal map is a conformal map.
- (d) Show that Gaussian Curvature is a square of geometric mean of Principal curvatures
- (e) Find the image of the Gauss map for $\sigma(u,v) = (u,v,u^2+v^2)$; $u,v \in R$
- (f) Prove that any Geodesic is unit-speed
- (g) Show that a unit-speed curve on a surface S is a geodesic if its geodesic curvature is zero and hence any part of a line on a surface is a geodesic.
- (h) State Gauss-Bonnet theorem.
- (i) Show that $\|\dot{\vec{r}}\|$ may be expressed as $\sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}$
- Q-3 (a) Let $\bar{\gamma}:(a,b)\to R^2$ be a unit-speed curve and let $s_0\in(a,b)$. Let $\varphi_0\in R$ be such that $\bar{\gamma}(s_0)=(\cos\varphi_0,\sin\varphi_0)$ then there exists a smooth map $\varphi:(a,b)\to R$ such that $\bar{\gamma}(s)=(\cos\varphi(s),\sin\varphi(s))$ for all $s\in(a,b)$ and $\varphi(s_0)=\varphi_0$
 - (b) State and prove Isoperimetric Inequality

- (b) If $k:(a,b)\to R$ is a smooth map, then there is a unit-speed curve $\overline{\gamma}:(a,b)\to R^2$ whose signed curvature is k. Moreover, if $\widetilde{\gamma}:(a,b)\to R^2$ is a unit-speed curve whose signed curvature is k then there is a direct isometry M of R^2 such that $\widetilde{\gamma}=M\circ\overline{\gamma}$
- Q-4 (a) Define Stereographic projection and hence obtain two feasible surface patches of $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$.
 - (b) State and prove Necessary and Sufficient condition for the local diffeomorphism $f: S_1 \to S_2$ to be a conformal map, where S_1 and S_2 are smooth surfaces.
 - (b) State and prove chain rule for smooth surfaces. Let $f: S_1 \to S_2$ be a local diffeomorphism and let $\bar{\gamma}$ be a regular curve in S_1 then show that $f \circ \bar{\gamma}$ is a regular curve in S_2
- Q-5 (a) Let $\sigma: U \to R^3$ be a regular surface patch and let $(u_0, v_0) \in U$. For $\delta > 0$ let $B_{\delta} = \left\{ (u, v): (u u_0)^2 + (v v_0)^2 < \delta^2 \right\}$. Let K > 0 be the Gaussian curvature of the surface at p then prove that $\frac{\lim}{\delta \to 0} \frac{A_N(B_{\delta})}{A_{\sigma}(B_{\delta})} = |K|$. [6]

- (b) If $\bar{\gamma}$ is a unit-speed curve on an oriented surface S, then its normal curvature is given by $\kappa_n = II_{\gamma} \langle \dot{\bar{\gamma}}, \dot{\bar{\gamma}} \rangle = \langle W_{\bar{\gamma}} (\dot{\bar{\gamma}}), \dot{\bar{\gamma}} \rangle_{\bar{\gamma}}$. If σ is a surface patch of a surface S and if $\bar{\gamma}(t) = \sigma(u(t), v(t))$ is a unit-speed curve on σ , then $\kappa_n = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2$
- (b) Let σ is a surface patch of an oriented surface S containing a point $p = \sigma(u, v)$ then $II_p\langle w, x \rangle = Ldu(w)du(x) + M\{du(w)dv(x) + du(x)dv(w)\} + Ndv(w)dv(x)$ for all $w, x \in T_p(S)$ where $du, dv : T_pS \to R$
- **Q-6** (a) Discuss geodesic on the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ [6]
 - (b) Define Christoffel symbol of 2nd kind and hence prove Codazzi-Mainardi Equations. [6]

 OR
 - (b) Define Gaussian and Mean Curvatures. Let $\sigma: U \to R^3$ be a surface patch of an oriented surface S and let $p = \sigma(u, v)$ for some $(u, v) \in U$ then the matrix of W_p with respect to the basis $\{\sigma_u, \sigma_v\}$ of $T_p(S)$ is $\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}$ and hence obtain $K_p = \frac{LN M^2}{EG F^2}$ and $H_p = \frac{LG 2MF + NE}{2(EG F^2)}$

