8

51 SEAT No.	ae
-------------	----

No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-II), PS02CMTH22, Algebra-I; Wednesday, 20th March, 2019; 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

No

ote:	(1) Notations and te	rminologies are star	ıdarc	l; (ii) Figures to	the t	right indicate marks.	
Q.1	1 Answer the following.						
1.	Which is from the following is not an Euclidean ring?						
	(A) $(2\mathbb{Z}, +, \cdot)$	(B) $(\mathbb{Z}, +, \cdot)$	(C)	$\mathbb{R}[x]$	(D)	$\mathbb{Q}[x]$	
2.	$\mathbb{Z}_3[x]/< x^2+1 > \text{is}$				` ,		
	(A) an infinite field.(C) a field containing 8 elements.		(B) a field containing 9 elements.				
9			(D)	NOT a field			
٠, ز.	The real number π i						
	(A) Q	(B) $\mathbb{Q}(\sqrt{2})$, ,	١ ,	(D)	$\mathbb{Q}(e)$	
4.	. The number $\sqrt{3}$ is algebraic over $\mathbb Q$ of degree						
	(A) 2	(B) 3	(C)	1	(D)	4	
5.	$o(G(\mathbb{Q}(\sqrt{2}),\mathbb{Q})) =$						
	(A) 1		(C)		(D)	4	
6.	Let $f(x) \in \mathbb{Z}_2[x]$ with $f'(x) = 0$. Then there exists $g(x) \in \mathbb{Z}_2[x]$ such that $f(x) = 0$						
	(A) $g(x^4)$	(B) $g(x)$		$g(x^2)$			
7.	Which is not normal	extension of \mathbb{Q} ?					
	(A) $\mathbb{Q}(\sqrt{2})$	(B) $\mathbb{Q}(\sqrt{5})$	(C)	\mathbb{Q}	(D)	$\mathbb{Q}(\pi)$	
8.	The polynomial x^2 –	$-3 \in \mathbb{Q}[x]$ is			` /		
(A) solvable by radicals.			(B)	reducible over Q.			
	(C) not solvable by radicals.		(D)	none of these			
	Attempt any seven :						
(a)	Show that every field	l is Euclidean ring.					

Q

[14]

- (b) Let $f(x) \in F[x]$ and $a \in F \setminus \{0\}$. If f(ax) is irreducible over F then show that f(x)is irreducible over F.
- (c) Is $x^2 + x + 1$ irreducible over \mathbb{Z}_2 ? Justify.
- (d) Is $\cos(2019^{\circ})$ algebraic over \mathbb{Q} ? Justify.
- (e) Show that \mathbb{C} is algebraic extension of \mathbb{R} .
- (f) Find $G(\mathbb{C}, \mathbb{R})$.
- (g) Define simple extension and give one example of it.
- (h) Define radical extension.
- (i) State Able's theorem.

Q.3

- (a) Show that every Euclidean ring is a principal ideal ring and possesses a unit element.
- (b) In an Euclidean ring, show that any two nonzero elements have the least common multiple.

[6]

OR

(b) Prove that $1+x+x^2+\cdots+x^{p-1}$ is irreducible over \mathbb{Q} , where p>2 is a prime number.

Q.4

- (a) If L is a finite extension of K and if K is a finite extension of F then show that L is [6] a finite extension of F.
- (b) Let p(x) be nonconstant polynomial of degree n over a field F. Then show that there exists an extension E of F having $[E:F] \leq n!$ such that p(x) has n roots in E.

OR

(b) If K is an extension of F and $a, b \in K \setminus \{0\}$ are algebraic over F, then show that ab^{-1} is algebraic over F. Does the converse hold? Justify.

Q.5

- (a) If $[K:F] < \infty$, then show that $o(G(K,F)) \le [K:F]$. State results which you use. [6]
- (b) If a and b are algebraic over F; whose characteristic zero, then show that there exists an element $c \in F(a, b)$ such that F(a, b) = F(c).

OR

(b) Find the degree of the splitting field of x^p-1 over \mathbb{Q} , where p>2 is a prime number.

0.6

- (a) Show that K is a normal extension of F, if K is the splitting field of some polynomial [6] over F.
- (b) Show that a group G is solvable iff $G^{(k)} = \{e\}$ for some $k \in \mathbb{N}$. [6]

₹.

(b) Find the Galois group of the polynomial x^5-1 over \mathbb{Q} .

