No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - II Examination Tuesday, 26th March, 2019

PS02CMTH04, Functional Analysis - I

Time: 10:00 a.m. to 01:00 p.m.

Maximum marks: 70

Note: (1) Figures to the right indicate marks of the respective question.

(2) Here H denotes the Hilbert space over the field K, where K is \mathbb{R} or \mathbb{C} , and I denotes identity operator. Assume other usual/standard notations wherever applicable.

Q-1 Write the most appropriate option only for each of the following questions.

[08]

- (d) $\frac{\pi^2}{6}$

2. _____ is a Hilbert space.

- (c) \mathbb{R}^6
- (d) C[0,1]

3. If x_1, x_2, \ldots, x_n are orthogonal, then their Gram matrix is $\underline{}$ $\underline{}$ matrix.

- (a) diagonal
- (b) identity
- (c) invertible
- (d) zero

4. If $\{u_n\}$ is an orthonormal basis of an infinite-dimensional Hilbert space, then _____.

- (a) $||u_n|| \to \sqrt{2}$ (b) $u_n \to 0$
- (c) $u_n \stackrel{w}{\rightarrow} 0$
- (d) $\{u_n\}$ is Cauchy

5. If S is self-adjoint, $\alpha \in \mathbb{C}$ with real part Re α , then _____ is self-adjoint.

- (a) $i\alpha S$
- (b) $-(\operatorname{Re}\alpha)S$
- (c) $\bar{\alpha}S$

6. If $T \in BL(H)$ be such that T^* is bounded below, then _____

- (a) T^* is regular
- (b) T is one-one
- (c) T^* is onto
- (d) T is onto

7. Let $T \in BL(\mathbb{R}^7)$ be a projection. Then $\sigma(T) = \underline{\hspace{1cm}}$.

- (a) $\{0,1\}$
- (b) R
- (c) $\{1, -1\}$

8. Let H be a Hilbert space and $T \in BL(H)$. If $\lambda \notin \sigma_a(T)$, then _____

- (a) $\lambda \notin \sigma_e(T)$ (b) $\lambda \notin \sigma(T)$ (c) $\lambda \notin \overline{W(T)}$ (d) $\lambda \in \sigma_e(T)$

Q-2 Attempt any seven of the following.

[14]

- (a) Show that inner product is jointly continuous.
- (b) Let X be an inner product space. Prove that $\|\cdot\|$ induced by the inner product satisfies $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ for all $x, y \in X$.

(c) Show that $\langle \cdot, \cdot \rangle$ defined by $\langle x, y \rangle = \sum_{i=1}^{n} x(i) \overline{y(i)}, \ \forall \ x, y \in K^n$ is an inner product.

- (d) Define best approximation.
- (e) Let $P \in BL(H)$ be a projection. Show that I P is also a projection.
- (f) For $T \in BL(H)$, show that $\ker(T) = \ker(T^*T)$.
- (g) Let H be a Hilbert space, $T \in BL(H)$ with $T^*T = I$. Show that T is an isometry.
- (h) Let H be a Hilbert space. For $T \in BL(H)$ show that $\lambda \in \sigma(T) \Leftrightarrow \bar{\lambda} \in \sigma(T^*)$.
- (i) Give an example of a compact operator on a Hilbert space.

(P.T.O)

Q-3 (a) Let X be an inner product space. Prove that $|\langle x,y\rangle|^2 \leq \langle x,x\rangle\langle y,y\rangle$, for all [06] $x, y \in X$ and the equality holds if and only if x and y are linearly dependent. (b) State and prove Bessel's inequality. [06] OR(b) Let H be an infinite dimensional Hilbert space with a countable orthonormal [06] basis. Prove that H is isometrically isomorphic to ℓ^2 . Q-4 (a) State and prove Riesz-representation theorem. [06](b) Let X be an inner product space, Y be a subspace of X and $x \in X$. Prove that [06] $y \in Y$ is a best approximation from Y to x if and only if $(x - y) \perp Y$. OR (b) Show by an example that completeness of the space is necessary condition in the [06]Projection theorem. Q-5 (a) Let H be a Hilbert space and $T \in BL(H)$. Prove that there exists a unique [06] $T^* \in BL(H)$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for every $x, y \in H$. (b) Let H be a Hilbert space and $T \in BL(H)$ be self-adjoint. Prove that [06] $||T|| = \sup\{|\langle Tx, x \rangle| : x \in H, ||x|| \le 1\}.$ OR. (b) Give an example with proper verification of each of the following. [06]1. A normal operator which is not self-adjoint. 2. A normal operator which is not unitary. Q-6 (a) Let H be a separable Hilbert space and T be a Hilbert-Schmidt operator on H. [06]Prove that T is compact. (b) Let $T \in BL(H)$. Prove that $\sigma(T) = \sigma_a(T) \cup \{\bar{\mu} \mid \mu \in \sigma_e(T^*)\}.$ [06]OR (b) Let H be a Hilbert space and $T \in BL(H)$. Prove that T^* is compact if T is [06]compact.

- × -