Sardar Patel University

M.Sc. (Mathematics) (Semester-II); Examination 2019

PS02CMTH03: Differential Geometry

Date: 23rd March, 2019

Full Marks: 70

Saturday

Time: 10:00 am to 01:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Assume usual/standard notations wherever applicable.
- 3. Figures to the right indicate full marks.
- Choose the most appropriate option for each of following question:

[8]

A parametrization of a parabola $y = x^2$ is (i)

$$(a) \left(t^4, t^8\right), t \in R$$

(b)
$$(t^2, t^4), t \in R$$

(a)
$$(t^4, t^8)$$
, $t \in R$ (b) (t^2, t^4) , $t \in R$ (c) (\sqrt{t}, t) , $t \in R$ (d) (t, t^2) , $t \in R$

(d)
$$(t, t^2), t \in I$$

- (ii) Equality holds in Isoperimetric Inequality if and only if
 - (a) $\bar{\gamma}$ is a Parabola (b) $\bar{\gamma}$ is an Ellipse (c) $\bar{\gamma}$ is a Hyperbola (d) $\bar{\gamma}$ is a Circle
- (iii) A surface patch of Cylinder $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ is given by

(a)
$$\sigma(u,v) = (u, v, u^2 + v^2)$$
 (b) $\sigma(u,v) = (\cos u, \sin u, v)$

(b)
$$\sigma(u,v) = (\cos u, \sin u, v)$$

(c)
$$\sigma(u,v) = (\cos u, \sin v, v)$$
 (d) $\sigma(u,v) = (\cos v, \sin u, v)$

(d)
$$\sigma(u,v) = (\cos v, \sin u, v)$$

- (iv) If a local isometry is diffeomorphism itself called
 - (a) a local isometry (b) an isometry (c) homeomorphism (d) conformal
- (v) The second fundamental form at p is a
 - (a) bilinear map (b) linear map
- (c) nonlinear map
- (d) Gauss map
- $z = \frac{1}{2}(k_1x^2 + k_2y^2)$ where k_1 and k_2 are principal curvatures then this equation (vi) represents Elliptic paraboloid if

- (a) $k_1 = k_2 = 0$ (b) $k_1, k_2 < 0$ (c) $k_1, k_2 > 0$ (d) $k_1 > 0, k_2 < 0$
- $2\sigma_m\sigma_n =$ (vii)
 - (a) G_n
- (b) F_n
- (c) E_{ν} (d) E_{ν}
- The sum of the interior angles of a Triangle on a Sphere is
 - (a) $< \pi$
- (b) 2π
- (c) = π
- $(d) > \pi$

(P.T.O.)

Q-2 Attempt any Seven

[14]

- (a) Prove that if $\bar{\gamma}$ is a unit-speed curve then $\dot{\bar{\gamma}} \perp \ddot{\bar{\gamma}}$
- (b) State Frenet-Serret theorem.
- (c) Prove that composition of two conformal map a conformal map.
- (d) Show that Gaussian Curvature is a square of geometric mean of Principal curvature
- (e) Find the image of the Gauss map for $\sigma(u,v) = (u, v, u^2 + v^2)$; $u,v \in R$
- (f) Prove that any Geodesic is unit-speed
- (g) Show that a unit-speed curve on a surface S is a geodesic if its geodesic curvature is zero and hence any part of a line on a surface is a geodesic.
- (h) State Gauss-Bonnet theorem.
- (i) Show that $\|\vec{y}\|$ can be expressed as $\sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2}$
- Q-3 (a) State and prove four vertex theorem

[6]

(b) State and prove Isoperimetric Inequality

[6]

OR

- (b) If $k:(a,b)\to R$ is a smooth map, then there is a unit-speed curve $\bar{\gamma}:(a,b)\to R^2$ whose signed curvature is k. Moreover, if $\widetilde{\gamma}:(a,b)\to R^2$ is a unit-speed curve whose signed curvature is k then there is a direct isometry M of R^2 such that $\widetilde{\gamma} = M \circ \overline{\gamma}$
- Q-4 (a) Define Stereographic projection and hence obtain two feasible surface patches of [6] $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$
 - (b) State and prove Necessary and Sufficient condition for the local diffeomorphism [6] $f: S_1 \to S_2$ to be a conformal map, where S_1 and S_2 are smooth surfaces.

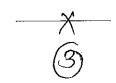
- (b) State and prove chain rule for smooth surfaces. Let $f: S_1 \to S_2$ be a local diffeomorphism and let $\bar{\gamma}$ be a regular curve in S_1 then show that $f \circ \bar{\gamma}$ is a regular curve in S_2
- Q-5 (a) Let $\sigma:U\to R^3$ be a regular surface patch and let $(u_0,v_0)\in U$. For $\delta>0$ let $B_{\delta} = \left\{ \left(u, v \right) : \left(u - u_0 \right)^2 + \left(v - v_0 \right)^2 < \delta^2 \right\}.$ Let K > 0 be the Gaussian curvature of the surface at p then prove that $\frac{\lim}{\delta \to 0} \frac{A_{\overline{N}}(B_{\delta})}{A_{\sigma}(B_{\delta})} = |K|$. [6]

- (b) Let σ is a surface patch of an oriented surface S containing a point $p = \sigma(u, v)$ then $II_p\langle w, x \rangle = Ldu(w)du(x) + M\{du(w)dv(x) + du(x)dv(w)\} + Ndv(w)dv(x)$ for all $w, x \in T_p(S)$ where $du, dv : T_pS \to R$
- Q-6 (a) Compute Christoffel symbol of 2^{nd} kind for $\sigma(u,v) = (\cos u, \sin u, v)$ [6]
 - (b) Define Christoffel symbol of 2nd kind and hence prove Codazzi-Mainardi equations [6]

OR

(b) Define Gaussian and Mean Curvatures. Let $\sigma: U \to R^3$ be a surface patch of an oriented surface S and let $p = \sigma(u, v)$ for some $(u, v) \in U$ then the matrix of W_p

with respect to the basis $\{\sigma_u, \sigma_v\}$ of $T_p(S)$ is $\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}$ and hence obtain $K_p = \frac{LN - M^2}{EG - F^2}$ and $H_p = \frac{LG - 2MF + NE}{2(EG - F^2)}$



. • . .