No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-II), PS02CMTH02, Algebra-I; Wednesday, 20^{th} March, 2019, 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

Note:	(i)	Notations and	terminologies	$are\ standard;$	(ii)	Figures to	the right	indicate i	marks.

	()	2	.rau.a	, (11) 1 18th CB 10	one right mulcate marks.		
Q.1	Answer the following	ıg.				[8]	
1.	Which of the following is a unit in the ring $(\mathbb{Z}, +, \cdot)$?						
	(A) 0	(B) -1			(D) 3		
2.	The ideal generated	by $x^2 + 2$ in $\mathbb{R}[x]$ is	S		. ,		
	(A) maximal (C) maximal but:	not prime	2 1	prime but not none of these	maximal		
3.	The polynomial x^2	+ 1 is reducible over					
	$(A) \mathbb{Q}$	(B) ℝ	(C)	\mathbb{C}	(D) none of these		
4.	Which is not unit in	n $J[i]$?					
	(A) i	(B) $-i$	(C)	1	(D) -2		
5.	The content of a po	$lynomial 2x^2 + x +$	5 is				
	(A) 2	(B) 4	(C)	8	(D) 1		
6.	$[\mathbb{C}:\mathbb{R}]=$						
	(A) 1	(B) 2	(C)	3	(D) ∞		
7.	The polynomial x^2	$-2 \in \mathbb{Q}[x]$ is					
	(A) solvable by rac(C) not solvable by	dicals y radicals		reducible over none of these	Q		
8.	The number of elem	ents in $G(\mathbb{Q}(\sqrt{2}),\mathbb{Q})$	$2(\sqrt{2})$) is			
	(A) 2	(B) 1	(C)	3	(D) ∞		
Q.2	Attempt any seven	.:				[14]	
	Show that every field is Euclidean ring. [14]						
(b)	If R is an Euclidean ring and $a, b, c \in R$ with $a \mid b, b \mid c$ then show that $a \mid c$.						
	Find units in $J[i]$.						
(a)	Let $f(x) \in F[x]$ and $a \in F \setminus \{0\}$. If $f(ax)$ is irreducible over F then show that $f(x)$ is irreducible over F .						
	State Eisenstein criterion.						
	Prove or disprove : \mathbb{C} is an algebraic extension of \mathbb{R} .						
	Find $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$.						
	Define radical extension.						
(1)	Define solvable grou	p.					

(P.T.O.)

\sim	0
1 1	~
10/	

- (a) Let R be a Euclidean ring and $a, b \in R \setminus \{0\}$ and b is not unit, then show that [6] d(a) < d(ab).
- (b) Show that any nonzero element in Euclidean ring is either a unit or can be written [6] as product of finite number of prime elements.

OR

(b) Let R be an Euclidean ring. Show that the ideal $\langle a \rangle$ is a maximal ideal in R if and only if a is a prime element in R.

Q.4

- (a) Prove that the product of any two primitive polynomials is a primitive polynomial. [6]
- (b) Prove that every reducible primitive polynomial over $\mathbb Q$ is reducible over $\mathbb Z$.

OR

[6]

(b) Construct a field of order 121.

Q.5

- (a) Let K be an extension field of a field F and $a \in K$ is algebraic over F. Then show [6] that $[F(a):F] < \infty$.
- (b) If K is an extension of F and $a, b \in K$ are algebraic over F. Then show that a + b is [6] algebraic over F.

OR

(b) Find the degree of splitting field of $x^3 - 2$ over \mathbb{Q} .

Q.6

- (a) Show that K is a normal extension of F, if K is the splitting field of some polynomial [6] over F.
- (b) Show that the group S_n , $n \geq 5$ is not solvable.

[6]

OR

(b) State the fundamental theorem of Galois theory.

