(PTO)

(52/A6) SEAT No.			No of printed pages: 2	
	Ma M.Sc. Monday, 10.00 a.m	atel University thematics Semester II 18 March 2019 1. to 01.00 p.m. 101 - Real Analysis I		
			Maximum Marks: 70	J
Q.1 Fill in the blanks.				[8]
(1) Let $A = \{\frac{1}{m} + \frac{1}{n} : $			(1)	
(a) 0		(c) 2	(d) ∞	
(2) For $n \in \mathbb{N}$, let E_n (a) 1	= [n, n+1]. The	n $m(\bigcup_{n=1}^{\infty} E_n)$ equals		
(a) 1	(b) 2	(c) 4	(d) ∞ .	
(3) Let $\varphi = 1\chi_{[2,3]} + 3$	$\chi_{\scriptscriptstyle [4,5]}$. Then the v	alue of $\int \varphi$ is		
(a) 1	` '	· (c) 3	(d) 4	
(4) For $n \in \mathbb{N}$, let f	$f_n = n\chi_{[0,\frac{1}{n}]}$, and	let f be the limit	function of $\{f_n\}$. Let $\alpha =$	=
$\lim_n \int_{[0,1]} f_n$ and β	$S = \int_{[0,1]} f$. Then			
(a) $\beta = 1$	(b) $\alpha = \beta$	(c) $\alpha < \beta$	(d) $\alpha > \beta$	
(5) Let E have measured	are 0, and let $f(x)$	$)=\infty \text{ for all } x\in E.$	Then $\int_E f$ is	
(a) 0	(b) 1	(c) 2	(d) ∞	
(6) If f is integrable of	over E , then the	value of $\int_{E} f $ is		
(a) $\int_E f^+$	(b) $\int_E f^-$	(c) $\int_{E} f^{+} + \int_{I}$	$_{\rm E} f^-$ (d) $\int_E f^+ - \int_E f^-$	
(7) The total variation	_			
(a) 0	(b) sin 1	(c) π	(d) 1	
(8) Which of the follow			nuous on $[0,1]$?	
(a) x^2	(b) e^x		(d) $\cos x^2$	
 Q.2 Attempt any Seven. (a) If E ⊂ R is a G_δ- set, then show that E^c is an F_σ- set. (b) If E is a countable set, then show that m*E = 0. (c) If f₁ and f₂ are measurable on E, then show that max{f₁, f₂} is measurable. (d) If φ is a measurable simple function vanishing outside a set of finite measure and if 				[14] if
and if F is a mea	ed measurable fun asurable subset of measurable fund	E, then show that I	t of finite measure E . If $f \ge f$, $f \le f$, over E , then show that f	

integrable over every measurable subset of E.

- (g) If f is integrable over E and if $c \in \mathbb{R}$, then show that $\int_E cf = c \int_E f$.
- (h) If $f:[a,b]\to\mathbb{R}$ is of bounded variation, then show that f is bounded.
- (i) If f is absolutely continuous on [a, b] and $\alpha \in \mathbb{R}$, then show that αf is absolutely continuous on [a, b].

Q.3

- (a) Show that the outer measure of an interval is its length. [6]
- (b) If f and g are real valued measurable functions on E and if $c \in \mathbb{R}$, then show that [6] both cf and f + g are measurable.
- OR
 (b) If $\{f_n\}$ is a sequence of measurable function on a measurable set E, then show that [6] $\liminf_n f_n$ and $\limsup_n f_n$ are measurable.

Q.4

- (c) Let f be defined and bounded on a measurable set E with mE finite. Suppose that [6] $\inf_{f \leq \psi} \int_E \psi(x) dx = \sup_{f \geq \varphi} \int_E \varphi(x) dx$, where φ and ψ are simple functions. Show that f is measurable.
- (d) Let $\{f_n\}$ be a sequence of measurable functions defined on a set E of finite measure, and let $|f_n| \leq M$ on E for all $n \in \mathbb{N}$ for some M > 0. If $f(x) = \lim_n f_n(x)$ for each x in E, then show that $\int_E f = \lim_n \int_E f_n$.
- (d) If f and g are nonnegative measurable functions on a measurable set E, then show [6] that $\int_E (f+g) = \int_E f + \int_E g$.

Q.5

- (e) Let f be a nonnegative function which is integrable over a measurable set E. Show [6] that given $\epsilon > 0$ there is $\delta > 0$ such that $\int_A f < \epsilon$ whenever A is a measurable subset of E with $mA < \delta$.
- (f) Let $\{f_n\}$ be a sequence of measurable functions that converges in measure to f on [6] E. Then show that there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that converges to f almost everywhere on E.
- (f) If $\{f_n\}$ is a sequence of nonnegative measurable functions and $f_n(x) \to f(x)$ almost [6] everywhere on a set E, then show that $\int_E f \le \liminf_n \int_E f_n$.

Q.6

- (g) Let f be an integrable function on [a, b], and let $F(x) = F(a) + \int_a^x f$ for all $x \in [a, b]$. [6] Show that F'(x) = f(x) for almost all x in [a, b].
- (h) Show that a function f is of bounded variation on [a, b] if and only if f is the difference [6] of two monotone real-valued functions on [a, b].
- (h) Let f be integrable on [a, b]. Show that $\int_a^x f(t)dt = 0$ for all $x \in [a, b]$ if and only if [6, b] a.e. in [a, b].

ու հկրդումի

