	Seat	No.	
15]			

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Semester - II) Examination

Course No	. PS02EMTH22	(Mathematical	Classical Mechanics)	Total Marks: 70
-----------	--------------	---------------	----------------------	-----------------

	Course No. PS0	Monday Apri Time: 10:00 a.m. Subject: Ma 2EMTH22 (Math	to 01:00 p.m. thematics	cal Mechanics) Total	Marks : 7
Note:	: :	are to be answered in ght indicate marks of l notations wherever a	the respective quest	nly.	
Q-1 C	thoose the most appr	opriate option for ea	ch of the following	questions:	(08)
1.	The two constraints (a) holonomic and r(b) non-holonomic a	heonomic	(c) holonomic a	nd non-holonomic	
	The degrees of freed (a) 6	tom of a rigid body (b) 12	with 12 particles in (c) 30	space is (d) 36	
3.	The curve between this minimum is a	two points $(x_1, y_1, 0)$	and $(x_2, y_2, 0)$ suc	th that $\int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	
	(a) great circle	(b) straight line	(c) catenary	(d) cycloid	
4.	The energy function pendent of generaliz (a) L		by $h = \underline{\hspace{1cm}}$.	aints and potential inde- (d) $L + 2V$	
5.	If Hamiltonian H do (a) Lagrangian	bes not depend on t	explicitly, then		
6.	If all the coordinate (a) H		clic, then the Rout (c) L		
	(a) M^2	(b) 2M	(c) M'	need not be symplectic. (d) $-M$	
8.	$[p_2 + q_1, p_1] = $ (a) $p_2 p_1 + q_1 p_1$		g usual. (c) -1	(d) 1	
	Answer <i>any seven</i> of a) State the principle				(14)
		equations of motion	of a system with	conservative forces and	
(c) What is the condi	tion for extremum o	f the integral $\int_{x_0}^{x_2} g$	$(y,\dot{y},x)dx?$	
	d) Show that momen				
(e) Define Routhian o	of a system.			
(f) State Hamilton's 1	modified principle.		•	
()	g) For a system of n -	degrees of freedom,	define phase space	and canonical variables.	
				۳.	

[P.T.OJ

- (h) Using Poisson brackets show that $\frac{\partial H}{\partial t} = \frac{dH}{dt}$, where H is Hamiltonian of a system.
- (i) State the transformation equations for a canonical transformation with generating function of type F_2 .
- Q-3 (a) Using D'Alembert's principle, derive the general form of Lagrange's equations of motion. (06)
 - (b) In the following systems, describe and classify the constraints, hence determine degrees of freedom. (06)
 - 1. Two particles moving in space connected by an in-extensible rod of length l.
 - 2. Motion of a particle on an ellipse.

OR

- (b) Describe simple pendulum and derive its Lagrange's equations of motion. (06)
- Q-4 (a) Describe Brachistochrone problem and obtain its solution. (06)
 - (b) State Hamilton's principle and derive Lagrange's equations of motion from it. (06)

OF

- (b) Lagrangian of a system is given by $L = \frac{m}{2}l^2(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) + mgl\cos\theta$. How many generalized coordinates are there? Which of them are cyclic? Compute the energy function. Is it conserved? Justify.
- Q-5 (a) Derive Lagrange's equations of motion from Hamilton's equations of motion. (06)
 - (b) Let $H = \frac{1}{2m} (p^2 + m^2 \omega^2 q^2)$ be Hamiltonian of a system. Construct the corresponding Lagrangian and hence derive Lagrange's equations of motion. (06)

OF

- (b) Consider a Lagrangian of the form $L = \frac{1}{2}m\left(\dot{x}^2 \omega^2 x^2\right)e^{\gamma t}$, where m is the mass, t is time, and ω and γ are positive constants. Construct the Hamiltonian and derive Hamilton's equations of motion. Is Hamiltonian a constant of motion? Justify.
- Q-6 (a) State and prove Poisson's theorem. (06)
 - (b) Define canonical transformation. Check whether the following transformations are canonical:
 - 1. $Q = \frac{1}{2}(q^2 + p^2), P = -\tan^{-1}(\frac{q}{p}).$
 - 2. $Q = q^2 \cos 2p$, $P = q^2 \sin 2p$.

OR

(b) Define a symplectic matrix. Show that the set of all $2n \times 2n$ symplectic matrices forms a group under usual matrix multiplication. (06)