[14]

Date: 23-04-2018

SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

Time: 10.00 To 1.00 p.m.

Subject: MATHEMATICS

Paper No. PS02EMTH21 - (Graph Theory - I)

Total Marks: 70

No. of printed pages: 2

1. Choose the correct option for each question:

[8]

(1) The diameter of the graph $K_{1,n}$ (n > 1) is

(a) 1

(b) 2

(c) n

(d) n + 1

(2) A symmetric digraph is

(a) Euler

(b) connected

(c) balanced

(d) none of these

(3) For $G = C_n$ with clockwise direction, rank(B) is

(a) 1

(b) n-1

(c) n

(d) none of these

(4) If G is a complete symmetric digraph with n vertices, then |E(G)|=

(a) $\frac{n(n-1)}{2}$

(b) n

(c) n(n-1)

(d) n^2

(5) The coefficient c_5 in chromatic polynomial of K_5 is

(a) 5^{5}

(b) 5^2

(c) 5

(d) 5!

(6) Which of the following graphs is Hamiltonian?

(a) P_n

(b) P_{2n}

(c) C_{2n}

(d) K_{n-2n}

(7) Let G be a simple graph without isolated vertex. Then a matching M in G is

(a) maximum ⇒ perfect

(c) maximal ⇒ maximum

(b) perfect ⇒ maximal

(d) maximal ⇒ perfect

(8) If $G = K_{3,n}$, then $\beta(G) = ____$

(a) 3

(b) n

(c) $min{3, n}$

(d) $\max\{3, n\}$

Attempt any SEVEN:

[14]

(a) Prove: If $K_{m,n} = K_{m+n}$, then m = n = 1.

(b) Prove or disprove: A balanced digraph is regular.

(c) Define adjacency matrix in a digraph and give one example of it.

(d) Give an example of a spanning in tree which is also a spanning out tree in a digraph.

(e) Prove: If G is a bipartite graph, then $\chi(G) = 2$.

(f) What is Four color problem?

(g) Prove or disprove: The graph C₄ is isomorphic to K_{2,2}.

(h) Prove: If $S \subset V(G)$ is a vertex cover, then V(G) - S is an independent set, in G.

(i) State Hall's theorem.

[P.T.O.]

- Define the following digraphs with examples: [6] 3. (i) Asymmetric (ii) complete asymmetric (iii) Symmetric (iv) complete symmetric. Prove that if G is connected Euler digraph, then it is balanced. [6] (b) OR
- Obtain De Bruijn cycle for r = 3 with all detail. [6] (b) Define arborescence and prove that an arborescence is a tree in which every

4.

(a)

vertex other than the root has an in-degree exactly one. Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G [6]

without self-loop. Then prove that $AB^T = 0$.

(b) Define a fundamental circuit matrix in a digraph and find it w. r. t. spanning tree [6] $T = \{a, d, e, g\}$ in digraph below:

[6]

[6]

- Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G S) \leq |S|$. [6] 5.
 - Let G be a k-chromatic graph with n vertices. Prove that $n \leq k \alpha(G)$. [6] (b) **OR**
 - Find the coefficients c_2 and c_3 of Chromatic polynomial of graph $K_{1,3}$.
- Prove: A matching M in a graph G is maximum if and only if G has no [6] 6. (a) M-augmenting path.
 - (b) Let G be a graph (without isolated vertex) with n vertices. Then prove that [6] $\alpha'(G) + \beta'(G) \le n$.
 - OR (b) Define maximum matching and perfect matching and find it for $G = P_6$. [6]