SEAT No.____

[12]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

Date: 23-04-2018

Time: 10.00 To 1.00 p.m.

Paper No. PS02EMTH02 - (Graph Theory - I)

Total Marks: 70

1. Choose the correct option for each question:

[8]

- (1) For $G = K_n$ (n > 2), if diam(G) = d and rad(G) = r, then
 - (a) d = r

Subject: MATHEMATICS

- (b) d < r
- (c) d > r
- (d) none of these

- (2) A balanced digraph is
 - (a) Euler
- (b) symmetric
- (c) connected
- (d) none of these
- (3) For $G = C_n$ with clockwise direction, rank(B) is
 - (a) n
- (b) n-1
- (c) 1
- (d) none of these
- (4) Let T be a spanning out-tree with root R. Then
 - (a) $d^+(R) = 0$, $d^-(R) = 0$
- (c) $d^{+}(R) > 0$, $d^{-}(R) > 0$
- (b) $d^{+}(R) = 0$, $d^{-}(R) > 0$
- (d) $d^{+}(R) > 0$, $d^{-}(R) = 0$
- (5) The coefficient c₅ in chromatic polynomial of K₅ is
 - (a) 5^5
- (b) 5^2
- (c) 5
- (d) 5!
- (6) Which of the following graphs is not Hamiltonian?
 - (a) $K_{n,n}$
- (b) K_n
- (c) P_n
- (d) C_n
- (7) Let G be a simple graph without isolated vertex. Then a matching M in G is
 - (a) maximum \Rightarrow perfect
- (c) maximal ⇒ maximum
- (b) maximum ⇒ maximal
- (d) maximal ⇒ perfect
- (8) If $G = K_{3,n}$, then $\alpha(G) = \underline{\hspace{1cm}}$.
 - (a) $\max\{3, n\}$
- (b) $\min\{3, n\}$
- (c) 3
- (d) n

2. Attempt any SEVEN:

[14]

- (a) Prove: If $K_{m,n} = K_{m+n}$, then m = n = 1.
- (b) Prove or disprove: An Euler digraph is connected.
- (c) Define fundamental circuit matrix in a digraph.
- (d) Define spanning in tree and give one example of it.
- (e) Prove: If $\chi(G) = 2$, then G is a bipartite graph.
- (f) Is K₅ uniquely colourable? Why?
- (g) Prove: The graph C_4 is isomorphic to $K_{2,2}$.
- (h) Prove: If $S \subset V(G)$ is an independent set, then V(G) S is a vertex cover, in G.
- (i) Define perfect matching and find one perfect matching in $K_{3,3}$.

3.	(a)	Define the following with examples:	[6]
		(i) In-degree (ii) Out-degree (iii) Balanced digraph (iv) Regular digraph	
	(b)	Prove that if G is connected Euler digraph, then it is balanced.	[6]
		OR	
	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.	[6]
4.	(a)	Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G without self-loop. Then prove that $AB^{T} = 0$.	[6]
	(b)	Prove that an arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
		OR	
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2,, v_n$ such that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2, n$.	[6]
5,	(a)	Prove: If G is simple graph with n vertices and $2\delta(G) \ge n \ge 3$, then G is Hamiltonian.	[6]
	(b)	Let G be a k-chromatic graph with n vertices. Prove that $n \le k \alpha(G)$. OR	[6]
	(b)	Find the coefficients c ₂ and c ₃ of Chromatic polynomial of graph K _{2, 2} .	[6]
6.	(a)	Let G be a graph (no isolated vertex) with n vertices. Then prove that $\alpha'(G) + \beta'(G) = n$.	[6]
	(b)	State Hall's theorem and show that a k-regular bipartite graph has a perfect matching.	[6]
		OR	
	(b)	Define $\alpha'(G)$, $\beta(G)$ and find it with the corresponding sets for $G = P_5$.	[6]