No of printed pages: 2

[3.8/A-26]

Sardar Patel University

M.Sc. (Sem-II), PS02CMTH22, Algebra-I; Wednesday, 11th April, 2018; 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

Q.1 Answer the following.

[8]

1. Pick out the maximal ideal of $(\mathbb{Z}, +, \cdot)$ from the following.

(A) < 121 >

(B) < 4 >

(C) < 1 >

(D) < 11 >

2. Which is false from the following?

(A) Every integral domain can be imbedded in a division ring.

(B) A finite integral domain is a field.

(C) Every field is principal ideal ring.

(D) none of these

3. The number $\sqrt{5+\sqrt{5}}$ is algebraic over $\mathbb{Q}(\sqrt{5})$ of degree

(A) 1

(B) 5

(C) 2

(D) 4

4. Which is true from the following?

(A) If a is transcendental and b is algebraic, then a + b is algebraic.

(B) If a is transcendental and $b \neq 0$ is algebraic, then ab^{-1} is algebraic.

(C) If ab is transcendental, then at least one of a or b is transcendental.

(D) none of these

5. What is $o(G(K, \mathbb{Z}_3))$, where K is the splitting field of $x^2 + 2$ over \mathbb{Z}_3 ?

 \cdot (A) 2

(B) 1

(C) 3

(D) none of these

6. The degree of the splitting field of $x^4 + x^2 + 1$ over \mathbb{Q} is

(A) 1

(B) 2

(C) 3

(D) 4

7. The Galois group of $x^2 - 7 \in \mathbb{Q}[x]$ is

(A) cyclic

(B) abelian but not cyclic

(C) non abelian simple

(D) none of these

8. Which one from the following is not solvable?

(A) S_3

(B) $(\mathbb{Z}_5, +)$

(C) S_4

(D) none of these

Q.2 Attempt any seven:

(a) Define Euclidean ring.

(b) Find all units of the ring of Gaussian integers, $J[i] = \{a + bi : a, b \in \mathbb{Z}\}.$

(c) Let $F \subset K$ and $a \in K$ be a root of $p(x) \in F[x]$. Show that $(x-a) \mid p(x)$ in K[x].

(d) Is $\sin 2^0$ algebraic over \mathbb{Q} ? Justify.

(e) Show that any non constant irreducible polynomial over a field of characteristic zero can not have multiple root.

(f) Show that $K_G = \{a \in K : \sigma(a) = a, \forall \sigma \in G\}$ is a subfield of K, where G = Aut(K).

(g) Define normal extension and give one example of it.

(h) Is $\mathbb{Q}(2^{\frac{1}{2}}, 3^{\frac{1}{3}}, 5^{\frac{1}{5}})$ a radical extension of \mathbb{Q} ? Justify.

(i) Define solvable group.

CP. T. O.)

[14]

Q.3		
(a)	State and prove Unique Factorization Theorem.	[6]
(b)	Show that any two non zero elements in Euclidean ring have the greatest common divisor and the least common multiple in the Euclidean ring.	[6]
	OR	
(b)	State and and prove the necessary and sufficient condition that the principle ideal in Euclidean ring to be maximal.	
Q.4		•
-	If $F \subset K$ and $a \in K$ is algebraic over F , then show that $[F(a):F]$ is finite.	[6]
	Let $p(x)$ be nonconstant irreducible polynomial of degree n over F . Then show that there exists an extension E of F having $[E:F]=n$ such that $p(x)$ has a root in E .	[6]
	OR Control of the Con	
(b)	Construct a field containing exactly 27 elements. State results which you use.	
Q.5		
(a)	Let $\sigma_i \in Aut(K)$ be distinct for $i = 1, 2,, n$. Can we find $a_i \in K$ $(i = 1, 2,, n)$ not all zero satisfying $\sum_{i=1}^n a_i \sigma_i(u) = 0$, $\forall u \in K$? Justify.	[6]
(b)	If F and F' are isomorphic fields, then show that any splitting fields E and E' of polynomials $f(x) \in F[x]$ and $f'(t) \in F'[t]$ respectively, are isomorphic by an isomorphism, ϕ with $\phi(\alpha) = \alpha'$, $\forall \alpha \in F$.	[6]
	OR	
(b)	Find the degree of the splitting field of x^p-1 over \mathbb{Q} , where $p>2$ is a prime number.	
Λ A		

(a) Prove that S_n is not solvable, where n ≥ 5.
(b) Let K be a normal extension of F, H be a subgroup of G(K, F) and K_H be a fixed [6] field of H. Then show that [K: K_H] = o(H).

OR

(b) State and prove Able's theorem. State results which you use.