Sc

No of printed pages: 2

542 A-22] Sardar Patel University Mathematics M.Sc. Semester II Monday, 9 April 2018 10.00 a.m. to 01.00 p.m. PS02CMTH21 - Real Analysis I Maximum Marks: 70 Q.1 Fill in the blanks. [8] (1) Let $E = \mathbb{Q} \cap (-1, 1]$, and let $A \subset \mathbb{R}$. Which of the following is true? (a) $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$ (c) $m^*(A) < m^*(A \cap E) + m^*(A \cap E^c)$ (b) $m^*(A) > m^*(A \cap E) + m^*(A \cap E^c)$ (d) $m^*(E) \ge m^*(A \cap E) + m^*(A \cap E^c)$ (2) Let $f, g: \mathbb{R} \to \mathbb{R}$, let f be differentiable and g = f a.e. in \mathbb{R} . Then (a) g is continuous (c) g is measurable (b) g is differentiable (d) g is a constant map (3) Let f be a bounded measurable function vanishing outside a set of finite measure. Let F be a measurable subset of a measurable set E. Which of the following is true? (b) $\int_E f \le \int_F f$ (c) $\int_E f \ge \int_F f$ (a) $\int_E f = \int_F f$ (d) none of these (4) Let $f:[a,b]\to\mathbb{R}$ be bounded and A be the set of continuity of f. Then f is Riemann integrable if and only if (a) A is a finite set (c) A has measure 0 (d) mA = b - a(b) A is a countable set (5) Let $f: \mathbb{R} \to \mathbb{R}$ be an even function, f(n) = 0 for all $n \in \mathbb{Z}$, and let $f(x) = \frac{1}{n^2}$ if n-1 < x < n for $n \in \mathbb{N}$. Then the value of $\int_{\mathbb{R}} f$ is ___ (a) 0 (b) 1 (c) ∞ (d) none of these (6) If f is integrable function over a measurable set E, then (a) f = 0 a.e. (b) f is finite a.e. (d) $\int_E f \ge 0$ (c) $f \ge 0$ a.e. (7) The total variation of $f(x) = x^3$ over [0, 2] is _ (d) 8 (8) If $f:[a,b]\to\mathbb{R}$, then (a) $T_a^b = P_a^b + N_a^b$ (b) $T_a^b = P_a^b - N_a^b$ (c) $T_a^b = N_a^b - P_a^b$ (d) $T_a^b = -N_a^b - P_a^b$ Q.2 Attempt any Seven. [14](a) Show that [1,2] is a G_{δ} - set. (b) If f^2 is a measurable function, then show that f may not be measurable. (c) If f_1, f_2, \ldots, f_n are measurable functions on E, then show that $\min\{f_1, f_2, \ldots, f_n\}$ is a measurable function. (d) If φ is a nonnegative measurable simple function vanishing outside a set of finite measure, then show that $\int_E \varphi \geq 0$ for every measurable set E. CP. T. O.)

(e) Let $f:[0,1]\to\mathbb{R}$ be a continuous map. Evaluate $\lim_{n\to\infty}\int_0^1 f(x)x^ndx$.

(f) Let f be a nonnegative measurable function on a measurable set E. If $\int_E f = 0$, then show that f = 0 almost everywhere.

(g) If f is integrable over E, then show that $\left|\int_{E} f\right| \leq \int_{E} |f|$. (h) Let $f \in BV[a,b]$ and $f(x) \neq 0$ for any $x \in [a,b]$. Is $\frac{1}{f} \in BV[a,b]$? Why?

(i) Is $\sin \frac{1}{x}$ absolutely continuous on [1, 2]? Justify.

Q.3

(a) Define outer measure set of $E \subset \mathbb{R}$. When is a set $E \subset \mathbb{R}$ called measurable? If $\{E_n\}$ is a sequence of measurable sets, then show that $\bigcup_n E_n$ is measurable.

(b) Show that (a, ∞) is measurable for all $a \in \mathbb{R}$.

[6]

(b) Let E be a measurable set. When is a function $f: E \to [-\infty, \infty]$ called measurable. [6] Let f be an extended real valued function on a measurable set E? Show that f is measurable if and only if $f^{-1}(U)$ is measurable for every open subset U of $[-\infty, \infty]$.

Q.4

(c) If $f:[a,b]\to\mathbb{R}$ is a bounded function, then show that $\int_a^b f(x)dx=\sup_{\phi\leq f}\int_a^b \phi(x)dx$, where ϕ is a step function over [a, b].

(d) If $\{f_n\}$ is a sequence of measurable functions that converge to a real valued function f a.e. on a measurable set E of finite measure, then show that given $\eta > 0$, there is a measurable subset A of E with $mA < \eta$ such that $\{f_n\}$ converges to f uniformly on E-A. Also, show that the conclusion may not hold if mE is infinite.

(d) Let f be a real valued measurable function on a measurable set E of finite measure. Then show that for each $\epsilon > 0$, there is a continuous function g on $\mathbb R$ and a closed set F contained in E for which f = g on F and $m(E - F) < \epsilon$.

Q.5

(e) If $\{f_n\}$ is a sequence of nonnegative measurable functions and $f_n(x) \to f(x)$ almost everywhere on a set E, then show that $\int_E f \leq \liminf_n \int_E f_n$. Also, give and example of a sequence $\{f_n\}$ and a functions f for which we get the strict inequality.

(f) Let f be integrable over a measurable set E, and let $\epsilon > 0$. Show that there is $\delta > 0$

such that $|\int_A f| < \epsilon$ for every measurable subset A of E with $mA < \delta$.

(f) Let f_n, f be measurable functions on E. When do we say that $\{f_n\}$ converges to fin measure? Suppose that a sequence $\{f_n\}$ converges to f pointwise on E. Is it true that $f_n \to f$ in measure on E? Justify.

(g) If f is absolutely continuous on [a, b] and f' = 0 a.e. in [a, b], then show that f is a constant function.

(h) Let $f, g: [0,1] \to \mathbb{R}$ be defined as f(0) = g(0) = 0, $f(x) = x \sin \frac{1}{x}$, $0 < x \le 1$ and $g(x) = x^2 \sin \frac{1}{x^2}$, $0 < x \le 1$. Are f and g of bounded variation? Justify.

(h) Let f be an integrable function over [a, b], and let $F(x) = F(a) + \int_a^x f$ for all $x \in [a, b]$. Show that F'(x) = f(x) for almost all x in [a, b].

