Se

[25/A-22] Sandan Pata	No of printed 1	pages: 2
Sardar Pate	el University	• .
M.Sc. (Sem-II), PS02CMTH05, Meth	nods of Partial Differential Equations;	·
Friday, 20 th April, 2018;	10.00 a.m. to 01.00 p.m.	
	Maximum M	arks: 70
Note: (i) Notations and terminologies are sta	ndard; (ii) Figures to the right indicate	e marks.
Q.1 Answer the following.	•	[8]
1. The order of $(D+1)(D'-D)^2z = 0$ is	-	
(A) 2 (B) 3		• •
2. The equation $r-2q-t=0$ can be write	` '	P(D,D')
equals	(, , , , , , , , , , , , , , , , , , ,	, ,
(A) $D^2 - 2D' - D'^2$	(B) $D^2 - 2D - D'^2$	
	$(D) D'^2 + 2D - D^2$	
3. The equation $4y^2r + x^2t = 0$ is classified		•
(A) x -axis only	(B) y-axis only	
(C) both axes only	(D) none of these	
4. In Monge's method, the λ - quadratic		•
(A) $2\lambda^2 - 3\lambda + 1 = 0$	$(B) 2\lambda^2 + 3\lambda + 1 = 0$	•
$(C) 2\lambda^2 + 1 = 0$	(D) none of these	•
5. The solution of $x^2y'' + xy' + (x^2 - m^2)$	•	-
(A) $J_m(x)$ (B) $J_n(mx)$		
6. Which one from the following is Lapla		,
	(B) $u_{xx} + u_{yy} = \frac{1}{c^2} u_{tt}$	
	(D) none of these	
7. A solution of $$ is known as equip	· ,	
(A) Laplace equation	(B) heat equation	
(C) wave equation	(D) none of these	
8. If u_1 and u_2 are any two solutions of I	` '	
(A) $u_1 = \alpha u_2$ $(1 \neq \alpha \in \mathbb{R})$	(B) $u_1 - u_2 = \alpha \ (0 \neq \alpha \in \mathbb{R})$	
(C) $u_1 = u_2$ (1 $\neq u \in \mathbb{N}$)	(D) none of these	,
$(O) u_1 - u_2$	(D) Holle of disese	
Q.2 Attempt any seven:	·	[14]
(a) Define general solution of partial difference	rential equation.	
(b) Find a pde by eliminating f and g fro	m z = f(x - y) + g(x + y).	
(c) Solve: $(D^2 - D')z = 0$.		
(d) Find D^2z , if x and y in $z = z(x, y)$ rep	placed by $u = \log x$ and $v = \log y$.	
(e) Classify the region in which the equat	ion $r - 2s + t + 2p - q = 0$ is paraboli	c.
(f) Give an example of pde which is hype		
(g) Find $u = u(x, y)$ and $v = v(x, y)$ to co		
(h) State minimum principle.		
(i) State Harnack's theorem.		
		P. T. O.)
		•

Q.3

- (a) If $\alpha D + \beta D' + \gamma$ is a factor of F(D, D') with $\alpha \neq 0$, then prove that $e^{-\frac{\gamma}{\alpha}x}\phi(\beta x \alpha y)$ is a solution of F(D, D')z = 0, where ϕ is arbitrary function.
- (b) Find particular integral of $(D^2 D'^2 3)z = e^{2x+y}$. [6]

(b) Find the general solution of $(D^2 - D'^2)z = \cos(2x - 3y)$.

Q.4

- (a) Convert $r x^2t = 0$ into the canonical form. [6]
- (b) Solve r 4t = 0 using Monge's method. [6]

(b) Solve $3r + 4s + t + rt - s^2 - 1 = 0$ using Monge's method.

- (a) Find the general solution of $(x^2D^2 y^2D'^2 yD' + xD)z = xy^2$. [6]
- (b) Solve $\frac{\partial^2 \varphi}{\partial x^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of separation of variables and show that the solution can be put in the form $\varphi(x,t) = e^{inx-kn^2t}$, where n is a constant. [6]

(b) Derive Laplace equation in cylindrical coordinates.

Q.6

- (a) State and prove maximum principle.
- [6] (b) Discuss Dirichlet exterior BVP for a circle. [6]

OR

(b) Show that the solution of Neumann BVP is unique upto additive constant.