Sea	t No.:		-	No. of printed pages: 2	
[36	/A-22] M.Se	SARDAR PATER c. (Mathematics) Se Tuesday, 17 th PS02CMTH04, Fur	emester - II Exan h April, 2018	nination	
Time:	10:00 a.m. t		iculonal Analysis	Maximum marks: 70	
Note:	Figures to the r	ight indicate full marks		juestions.	
Q-1 W	rite the question	number and appropria	ate option number	r only for each question.	[8]
(a) t	ℓ^p is an inner p	roduct space if $p = $	_		
((i) 2	(ii) 2 or ∞	(iii) 1	(iv) all of these	
(b) 1	For a real numb	er p , $ x _p = (\sum_{i=1}^n x(i) ^n)$	$(0) ^p)^{rac{1}{p}}$ is a norm on \emptyset	\mathbb{C}^n if and only if p	
((i) > 0	(ii) > 1	(iii) ≥ 1	(iv) none of these	
(c) I	Best approxima	tion from $E = \mathbb{R} \times \mathbb{N}$ t	o $(3,3)$ is		
	(i) 0			(iv) $(3,3)$	
(d) I	For $\{u_1 = (\frac{1}{\sqrt{3}}, \cdots x) = \underline{\qquad}$	$(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), u_2 = (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}})$	$(\frac{1}{6}, \frac{\sqrt{2}}{\sqrt{3}})$ equality holds	lds in Bessel's inequality	
			(iii) $(1, 2, 1)$	(iv)(0,0,1)	
		, is selfadjoint.			
		(ii) $T^* - T$	(iii) TT^*	(iv) $\frac{T^2+T}{2}$	
	A operato		<i>t</i> >		
		(ii) selfadjoint	(iii) unitary	(iv) compact	
		operator T on a ℓ^2 , $0 \in$		/ · \	
		(ii) selfadjoint ge of $_$ operator T		(iv) compact	
		(ii) compact			
		. ,	()	(IV) poblities	[1.4]
Q-2 Attempt Any Seven of the following:(a) Define and give an example of a normed linear space.					[14]
	-	-	1	 UR2\	
		prove that $ x+y ^2 + $			
- (9)		$a \in \mathbb{R}$ such that $\{(a, 1), a \in \mathbb{R}\}$			
(d)		e an example of a proje		t is a projection.	
	(e) Define the <i>right shift operator</i> on ℓ^2 and find its kernel.				
(f)	Define the adjoint of an operator. Find adjoint of the operator $T: \mathbb{C}^3 \to \mathbb{C}^3$ defined by $T(z_1, z_2, z_3) = (2z_2 + iz_3, z_1 + z_2, z_3), (z_1, z_2, z_3) \in \mathbb{C}^3$. Justify your answer.				
(g)	For operators	$T, S \in BL(H)$, prove the	$nat (ST)^* = T^*S^*$		
(h)		m and eigenspectrum o	, ,	·	
(i)		e an example of a <i>com</i>		fy your claim.	

Q-3 (j) State and prove the Schwarz inequality for inner product space. [6] (k) Show that an inner product space is a uniformly convex normed linear space with [6] the induced norm. OR (k) Let X be an inner product space, E be an orthonormal subset of X and $x \in X$. [6] Show that the set $E_x = \{u \in E : \langle x, u \rangle \neq 0\}$ is countable. Q-4 (1) Let $E \subset H$. Show that E^{\perp} is a closed subspace of H. [6] (m) Let X be an inner product space and $x_1, x_2, \ldots, x_n \in X$ be linearly independent. [6] Show that the Gram matrix of x_1, x_2, \ldots, x_n is regular. (m) Let X be an inner product space. If $E \subset X$ is convex and $x \in X$, then show that [6] there exists at most one best approximation from E to x. Q-5 (n) For $T \in BL(H)$, show that $||T^*|| = ||T||$ and $||T^*T|| = ||T||^2$. 6 (o) (i) For $T \in BL(H)$, show that $\ker(T)^{\perp} = \overline{R(T^*)}$. Hence deduce that T is one-one [6] if and only if $R(T^*)$ is dense in H. (ii) Show that $T \in BL(H)$ is an isometry if and only if $T^*T = I$. (o) Given $S \in BL(H)$, show that there are unique selfadjoint operators $A, B \in$ 6 BL(H) such that S = A + iB. Q-6 (p) For $T \in BL(H)$, show that $\sigma_e(T) \subset \sigma_a(T)$. Also give an example to show that [6] inclusion may be proper. Justify your claim. (q) (i) If $T \in BL(H)$ is normal, then show that $\sigma(T) = \sigma_a(T)$. [6] (ii) For $T \in BL(H)$, show that $\sigma_a(T) \subset \overline{W(T)}$. OR (q) Show that a compact linear transformation $T: H \to H$ is bounded. [6]