No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-II), PS02CMTH02, Algebra-I; Wednesday, 11th April, 2018, 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

			1	•	
	Answer the following.				
1.	The number of elements in a field can be				
	(A) 6	(B) 15	(C) 4	(D) 36	
2.	Which is from the following is not an Euclidean ring?				
	(A) $\mathbb{C}[x]$	(B) $(\mathbb{Z}, +, \cdot)$	(C) $(2\mathbb{Z}, +, \cdot)$	(D) none of these	
3.	The polynomial $x^2 - 5$ is reducible over				
	$(A) \mathbb{Q}$		(C) C	(D) none of these	
4.	Which is unit in $J[i]$				
	(A) 2i	(B) $1 + i$	(C) -i	(D) -2i	
5.	The content of a polynomial $4x^2 + 2x - 2$ is				
	(A) 2	(B) 4	(C) 8	(D) 1	
6.	$[\mathbb{C}:\mathbb{R}]=$			`	
•	(A) 1		(C) 3	(D) ∞.	
7.	Which one from the following is not a radical extension of \mathbb{Q} ?				
	(A) $\mathbb{Q}(i)$	(B) $\mathbb{Q}(\sqrt{2})$	(C) $\mathbb{Q}(\pi)$	(D) $\mathbb{Q}(\sqrt{2},\sqrt{3})$	
8.	The group S_n is solv	vable for $n =$,	
		(B) 6	(C) 7	(D) 4	
\cap 2	Attempt any seven				
•	Show that every field				

[14]

- (b) State Wilson's theorem.
- (c) Show that the only units in F[x] are constant polynomials.
- (d) Define primitive polynomial and give one example of it.
- (e) $f(x) \in F[x]$ and $0 \neq a \in F$. If f(ax) is irreducible over F then show that f(x) is irreducible over F.
- (f) Find the splitting field of $(x^2-7)(x^2-4)$ over \mathbb{Q} .
- (g) Is $\sqrt{2} + \sqrt{3}$ algebraic over \mathbb{Q} ? Justify.
- (h) Define normal extension and give one example of it.
- (i) Prove or disprove: Every cyclic group is solvable.

Q.3(a) Show that every Euclidean ring is a principal ideal ring and possesses a unit element.

(b) State and prove Fermat's theorem. State results which you use. [6]

OR

(b) In a Euclidean ring R, show that a non-zero element a in R is a unit if and only if d(a) = d(1).

CP. T. O.)

\sim	- 4
11	- /1

(a) State and prove Eisenstein criterion.

- [6]
- (b) Prove that the product of any two primitive polynomials is a primitive polynomial.

[6]

(b) Show that $15x^4 - 10x^2 + 9x + 21$ is irreducible over \mathbb{Q} .

Q.5

- (a) If K is an extension of F and $a, b \in K$ are algebraic over F, then show that a + b is [6] algebraic over F.
- (b) If L is algebraic extension of K and if K is algebraic extension of F, then show that [6] L is algebraic extension of F.

OR

(b) Let $f(x) \in F[x]$. Then show that f(x) has a multiple root iff f(x) and f'(x) have nontrivial common factor.

Q.6

- (a) Show that K is a normal extension of F if K is the splitting field of some polynomial [6] over F.
- (b) Show that the group S_n , $n \ge 5$ is not solvable. [6]

(b) State the fundamental theorem of Galois theory.

* * * * *