SEAT No.

No of printed pages: 2

[53 & A-21]

Sardar Patel University Mathematics

M.Sc. Semester II

Monday, 09 April 2018 10.00 a.m. to 01.00 p.m.

PSÖ2CMTH01 - Real Analysis I

		· ·		Maximum Mar	ks: 70	
7 .	Fill in the blanks.	_				[8]
(1) I	et A = (0, 1) and I	$\beta = [0,1] - \mathbb{Q}$. Which	of the following is	true?		
	(a) $m^*A < m^*B$	(b) $m^*A > m^*B$	(c) $m^*A = m^*B$	(d) none of the	se	
(2) F	For $n \in \mathbb{N}$, let $E_n =$	$[-\frac{1}{n},1] \cup [2,2+\frac{1}{n^2}].$	Then $m(\bigcap_{n=1}^{\infty} E_n)$	equals		٠.
	(a) 1	(b) 2	(c) 4	(d) ∞		
		e defined as $f(x) = 1$ esgue integral $\int_0^1 f(x)$		$f(x) = 0 \text{ if } x \in \mathbb{C}$	Q. The	
	(a) 0	(b) 1	(c) 2	(d) ∞		
(4) T	The value of $\lim_{n\to\infty} \int_{[0,1]}$	$e^x x^n dx$ is			· .	
	(a) 0	(b) 1	(c) ∞	(d) none of the	se	
(5) V	Vhich of the followi	ng is true for a funct	ion f ?			
	(a) $f = f^+ + f^-$	(b) $ f = f^+ - f^-$	(c) $f = f^+ - f^-$	(d) $ f = -f^+$	$-f^-$	
(6) L		e on E. Which of the	e following implies	that f is integrab	le over	
	(a) $ f $ is integrable (b) f^2 is integrable		(c) f^+ is integrabl (d) f^+ or f^- is int			
(7) T	The total variation of $f(x) = \sin x$ on $[0, \frac{\pi}{2}]$ is					
((a) 0 ····	(b) sin 1 .	(c) π	(d) 1·		
· (8) If	$f:[a,b] o \mathbb{R}$, then	n which of the followi	ng is true?			
((a) $T_a^b = P_a^b - N_a^b$	(b) $T_a^b = P_a^b + N_a^b$	(c) $T_a^b = -P_a^b + N_a$	$T_a^b = -P_a^b - \frac{1}{a}$	N_a^b	
(a) L(b) S(c) If	how that $[1,2]$ is a $f f $ is measurable of	$G=0$. Show that E is G_{δ} - set. Over \mathbb{R} , then show that	at f need not be m		f = 0.	[14]
t]	If f is a nonnegative measurable function over a measurable set E and if $\int_E f = 0$, then show that $f = 0$ a.e. on E.					
` '	$ f $ is a bounded methat $ \int_E f \le \int_E f $.	asurable function defi	med on a set of finit	te measure E , the	n show	
	JEJ = JE J	. 1			CP. T. C).)

- (f) Let $\{f_n\}$ be a sequence of nonnegative measurable functions defined on a measurable set E and $f_n \to f$ on E. If $f_n \le f$ for each n, then show that $\int_E f = \lim_n \int_E f_n$.
- (g) State Lebesgue's dominated convergence theorem.
- (h) If $f:[a,b]\to\mathbb{R}$ is decreasing, then show that f is of bounded variation.
- (i) Show that every absolutely continuous function is continuous.

Q.3

- (a) Define outer measure of $E \subset \mathbb{R}$. If E_1, E_2, \ldots, E_n are measurable, then show that $\bigcup_{k=1}^n E_k$ is measurable.
- (b) Let E be a measurable set. When is a function $f: E \to [-\infty, \infty]$ called measurable? Show that a function $f: E \to [-\infty, \infty]$ is measurable if and only if the set $\{x \in E:$ f(x) < r is measurable for every $r \in \mathbb{Q}$.

6

(b) Prove that [0, 1] contains a nonmeasurable set.

Q.4

- (c) Let f be defined and bounded on a measurable set E with mE finite. Suppose that 6 $\inf_{f \leq \psi} \int_E \psi(x) dx = \sup_{f \geq \varphi} \int_E \varphi(x) dx$, where φ and ψ are simple functions. Show that f is measurable.
- (d) If arphi and ψ are measurable simple functions vanishing outside a set of finite measure, 6 then prove that $\int (\varphi + \psi) = \int \varphi + \int \psi$.

OR.

(d) If $\{f_n\}$ is a sequence of measurable functions that converge to a real valued function f a.e. on a measurable set E of finite measure, then show that given $\epsilon > 0$, there is a measurable subset $A \subset E$ with $mA < \epsilon$ such that $\{f_n\}$ converges to f uniformly on E-A.

O.5

- (e) Let $\{u_n\}$ a sequence of nonnegative measurable functions defined on a measurable set E. Prove that $\int_E (\sum_{n=1}^\infty u_n) = \sum_{n=1}^\infty \int_E u_n$. State the results you use. (f) If f and g are integrable over E, then prove that f+g is integrable over E and
- $\int_{E} (f+g) = \int_{E} f + \int_{E} g.$ OR
- (f) When do we say that a sequence $\{f_n\}$ converges in measure? Let $\{f_n\}$ be a sequence of [6] measurable functions that converge in measure to f. Show that there is a subsequence $\{f_{n_k}\}$ that converges to f almost everywhere.

Q.6

- (g) Let f be an integrable function on [a,b], and let $F(x) = F(a) + \int_a^x f$ for all $x \in [a,b]$. Show that F'(x) = f(x) for almost all x in [a, b].
- (h) If f is absolutely continuous on [a, b], then show that f is of bounded variation on [a,b]. Is the converse true? Justify.
- (h) If f is integrable on [a,b] and $\int_a^x f(t)dt = 0$ for all $x \in [a,b]$, then show that f=0a.e. in [a,b].