SEAT No.	1			
La service de la construction			No of printed pages: 2	
[62 f A-10]	Sardar Pate Mathe M.Sc. Se Thursday, 02 N 2.00 p.m. t PS02CMTH01 -	matics mester II November 2017 o 5.00 p.m.	8) C
			Maximum Marks: 70	
Q.1 Fill in the blanks. (1) Let $A = (-1, 1)$ as	nd $B = [-1, 1]$. Which	h of the following is		[8]
(a) $m^*A < m^*B$	(b) $m^*A > m^*B$	(c) $m^*A = m^*B$	(d) none of these	
(2) The Lebesgue inte	gral of the constant	function 1 over $[-1,$	1] $\cap (\mathbb{R} - \mathbb{Q})$ is	
(a) 1	(b) 2	(c) 4	(d) _ ∞	
(3) Let $f : [0,1] \to \mathbb{R}$ the value of the lo	be defined as $f(x) =$ wer Riemann integra	= 1 if $x \in \mathbb{R} - \mathbb{Q}$ and l $\int_0^1 f(x) dx$ is	d $f(x) = 0$ if $x \in \mathbb{Q}$. The	
(a) 0			(d) ∞	
(4) The value of $\lim_{n \to \infty}$		alita an an A		
(a) 0	(b) 1	(c) ∞	(d) none of these	
(5) Let $f(x) = \sin x$ for	or $x \in [0, \pi]$. Then f	- is		
(a) $- \sin x $	(b) $\sin x$	(c) 0	(d) $-\sin x$	
(6) Let $f_n(x) = 2 - \frac{1}{n}$	for all $x \in \mathbb{R}$, and let	t $f = \lim_{n \to \infty} f_n$. T	hen $\int_{\mathbb{R}} f$ is	
(a) 1	(b) 2	(c) ∞	(d) none of these	
(7) Let $F(x) = \int_{-1}^{x} t $	dt for all $x \in [-1, 1]$.	Which of the follow	ving is not true?	
(a) F is absolute (b) F is of bound	ly continuous led variation	(c) F is different(d) none of these	tiable	
(8) Let $f(x) = x^2$. The function $f(x) = x^2$.	hen $T_3^4(f)$ is			
(a) 9	(b) 1	(c) 3	(d) 16	
Q.2 Attempt any Sev	ien.			[14]
 (a) Show union of tw (b) Find the measure (c) If f² is measurab 	o σ - algebras need not of the set $\{\pi + x : x \in \mathbb{R}, \text{ then show tive measurable functions}\}$	$f \in \mathbb{Q}$. that f need not be	measurable. ble set E and if $\int_E f = 0$,	

then show that f = 0 a.e. on E.
(e) Give an example of a Lebesgue integrable function over [0, 1] which is not Riemann integrable.

1

- (f) If f is integrable over E and if A and B are disjoint measurable subsets of E, then show that $\int_{A\cup B} f = \int_A f + \int_B f$. (g) If f is integrable over E, then show that $|\int_E f| \leq \int_E |f|$.
- (h) State Jordan's Lemma. Write $-\sin x$ as a difference of monotonic functions over $[0, \frac{\pi}{2}].$
- (i) If f is a continuous function on [0, 1], then show that $F(x) = \int_0^x f(t) dt$, $x \in [0, 1]$, is a bounded function.
- Q.3
- (a) If $a \in \mathbb{R}$, then show that $m^*(a, \infty) = \infty$.
- [6] (b) Let E be a measurable set, and let $\{f_n\}$ be a sequence of measurable functions. [6]Prove that $\sup_n f_n$ and $\inf_n f_n$ are measurable functions. Deduce that $\liminf_n f_n$ and $\limsup_n f_n$ are measurable functions.
- \mathbf{OR} (b) Prove that there exists a nonmeasurable set.

[6]

- Q.4
- (c) Let E be a measurable set of finite measure, and $\{f_n\}$ a sequence of measurable [6] functions defined on E. Let f be a real valued function such that for each x in E we have $f_n(x) \to f(x)$. Show that given $\epsilon > 0$ and $\delta > 0$, there is a measurable set $A \subset E$ with $mA < \delta$ and an integer N such that for all $x \notin A$ and all n > N, $|f_n(x) - f(x)| < \epsilon.$
- (d) Let f and g be nonnegative measurable functions on a measurable set E, and let 6] $\alpha, \beta \ge 0$. Show that $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$.
- (d) Let f be defined and bounded on a measurable set E with mE finite. If f is measur-[6] able, then show that $\inf_{f \leq \psi} \int_E \psi(x) dx = \sup_{f \geq \varphi} \int_E \varphi(x) dx$, where ψ and φ are simple functions.
- Q.5
- (e) If $\{f_n\}$ is a sequence of nonnegative measurable functions and $f_n(x) \to f(x)$ almost [6] everywhere on a set E, then show that $\int_E f \leq \liminf_n \int_E f_n$. Hence prove Monotone Convergence Theorem.
- (f) Prove that the Lebesgue integral of a nonnegative measurable function generates a |6|measure.
- (f) When do we say that a sequence $\{f_n\}$ converges in measure? Let $\{f_n\}$ be a se-6 quence of measurable functions that converges in measure to f. Show that there is a subsequence $\{f_{n_k}\}$ that converges to f almost everywhere.
- Q.6
- (g) If f is integrable on [a, b] and $\int_a^x f(t)dt = 0$ for all $x \in [a, b]$, then show that f = 0[6] a.e. in [a, b]. State the results you use.
- (h) Show that every absolutely continuous function on [a, b] is of bounded variation. Is 6 the converse true? Justify.
- (h) Let f and g be real valued functions on [a, b], and let $\alpha \in \mathbb{R}$. Show that $T_a^b(f+g) \leq$ [6] $T_a^b(f) + T_a^b(g)$ and $T_a^b(\alpha f) = |\alpha|T_a^b(f)$.

and the second	1		
[GEAT No]	No	of printed pages: 2	
564A-22] SARDAR PATEL M.Sc. (Mathematics) Sem- Monday, 06 th Nov PS02CMTH02,	ester - II Examinatic zember, 2017	n	
Time: 02:00 p.m. to 05:00 p.m.	Maxii	num marks: 70	
Note: Figures to the right indicate full marks notations wherever applicable.	of the respective quest	ions. Assume stand	ard
Q-1 Write the question number and appropriate	option number only	for each question.	[8]
(a) is not a Euclidean ring.			
(i) $\mathbb{Z}[x]$ (ii) $\mathbb{Z}[i]$	(iii) Z	(iv) Q	
(b) contains a zero divisor.		、 , –	
(i) \mathbb{Z} (ii) $3\mathbb{Z}$	(iii) $\mathbb{Z} \times \mathbb{Z}$	(iv) Q	
(c) $x^3 + 1 = (x + 1)^3$ in (i) $\mathbb{Z}_3[x]$ (ii) $\mathbb{Z}_2[x]$ (iii) 2	$\overline{a}[x]$ (iv) none (of the other three	
(d) is irreducible in $\mathbb{Z}_2[x]$.		A the boner times	
(i) $x^2 + 1$ (ii) $x^3 + 1$	(iii) $x^2 - x$	(iv) $x^2 - x + 1$	
(e) The field $\mathbb{R}[x]/\langle x^2+1\rangle$ is isomorphic to _	• •	()	
(i) \mathbb{Q} (ii) $\mathbb{Q}(\sqrt{2},\sqrt{3})$	(iii) C	(iv) R	
(f) $[\mathbb{C} : \mathbb{Q}] =$ (i) 1 (ii) 2			
(i) 1 (ii) 2	(iii) 3	(iv) ∞	
(g) is not a normal extension of \mathbb{Q} .			
(i) \mathbb{Q} (ii) $\mathbb{Q}(2^{\frac{1}{3}})$	(iii) $\mathbb{Q}(i)$	(iv) $\mathbb{Q}(\sqrt{3})$	
(h) is a symmetric rational function in			
(i) $(x_1 x_2 x_3)^2$ (ii) $x_1 + x_2$	(iii) $x_1x_2 + x_2x_3$	(iv) $x_1 x_2$	
Q-2 Attempt Any Seven of the following:			[14]
(a) Mention all units in $\mathbb{Z}[i]$.			
(b) Show that $\phi : \mathbb{C} \to \mathbb{C}$ defined by $\phi(x + y)$ phism.	$iy) = x - iy, (x + iy \in 0)$	C), is a homomor-	
(c) Show that a cubic polynomial in $\mathbb{Q}[x]$ h	as at least one real roo	ь.	
(d) Find all cubic irreducible polynomials i			
(e) Show that $x^4 + x + 1$ is irreducible in Z	$L_{2}[x].$		•
(f) Find a polynomial in $\mathbb{Q}[x]$ whose one re-			
(g) Is $\{rac{p(\pi)}{q(\pi)}: p(x), q(x) \in \mathbb{Q}[x]\}$ a field? Jus			
(h) Find $G(\mathbb{Q}(i),\mathbb{Q})$.			-
(i) Define the term: <i>solvable group</i> and giv	e one example of the sa	.me.	

ł

Sc

Page 1 of 2

0 0 (1)		
Q-3 (j)	If \mathcal{I} is an ideal of Euclidean ring \mathcal{R} , then show that $\mathcal{I} = \langle a_0 \rangle = \{a_0 x : x \in \mathcal{R}\}$ for some $a_0 \in \mathcal{R}$.	[6]
(k)	Show that any two nonzero elements a and b in an Euclidean ring \mathcal{R} have greatest common divisor and $(a, b) = \lambda a + \mu b$ for some $\lambda, \mu \in \mathcal{R}$.	[6]
	OR	
(k)	State and prove unique factorization theorem.	[6]
Q-4 (l)	State and prove Gauss's lemma.	[6]
(m)	State and prove the Eisenstein criterion.	[6]
	OR	
(m)	Show that $f(x) = \frac{3}{7}x^4 - \frac{2}{7}x^2 + \frac{9}{35}x + \frac{3}{5}$ is irreducible over \mathbb{Q} .	[6]
Q-5 (n)	If L is a finite extension of K and K is a finite extension of F , then show L is a finite extension of F .	[6]
(o)	Let K be an extension of F and $a \in K$. If a is algebraic over F, then show that $F(a)$ is a finite extension of F.	[6]
	OR	
(o)	Let K be an extension of F. If $a, b \in K$ are algebraic over F then show that ab is algebraic over F.	[6]
Q-6 (p)	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07] in the variables $x_1, x_2,, x_n$. Show that the splitting field of the polynomial	[6]
Q-6 (p)	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07]	[6]
Q-6 (p)	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07] in the variables $x_1, x_2,, x_n$. Show that the splitting field of the polynomial	[6]
	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07] in the variables $x_1, x_2,, x_n$. Show that the splitting field of the polynomial $p(t) = t^n - a_1 t^{n-1} + a_2 t^{n-2} - \dots + (-1)^{n-1} a_{n-1} t + (-1)^n a_n \in F(a_1, a_2,, a_n)[t]$	[6]
	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07] in the variables $x_1, x_2,, x_n$. Show that the splitting field of the polynomial $p(t) = t^n - a_1 t^{n-1} + a_2 t^{n-2} - \dots + (-1)^{n-1} a_{n-1} t + (-1)^n a_n \in F(a_1, a_2,, a_n)[t]$ is $F(x_1, x_2,, x_n)$. Let $n > 1$ be an integer, F be a field which contains all n^{th} roots of unity and $a \in F \setminus \{0\}$. Let K be the splitting field of $x^n - a \in F[x]$, then show that	
(q)	Consider $F[x_1, x_2,, x_n]$ and the elementary symmetric functions $a_1, a_2,, a_n$ [07] in the variables $x_1, x_2,, x_n$. Show that the splitting field of the polynomial $p(t) = t^n - a_1 t^{n-1} + a_2 t^{n-2} - \dots + (-1)^{n-1} a_{n-1} t + (-1)^n a_n \in F(a_1, a_2,, a_n)[t]$ is $F(x_1, x_2,, x_n)$. Let $n > 1$ be an integer, F be a field which contains all n^{th} roots of unity and $a \in F \setminus \{0\}$. Let K be the splitting field of $x^n - a \in F[x]$, then show that $K = F(u)$, where $u \in K$ is any root of $x^n - a$.	

ķ

(129 & A-61) No of printed pages: 2 Sardar Patel University Mathematics M.Sc. Semester II Wednesday, 08 November 2017 2.00 p.m. to 5.00 p.m. PS02CMTH03 - Differential Geometry Maximum Marks: 70 Q.1 Choose the correct option for each of the following. [8] (1) A Cartesian representation of the curve $\overline{\gamma}(t) = (\cos^2 t, \sin^2 t), t \in \mathbb{R}$, is (a) x + y = 1 (b) x + y = 0 (c) x - y = 1(d) none of these (2) Which of the following curves is not a closed curve? (a) $x^2 + y^2 = 1$ (b) $x^2 + y^2 = 4$ (c) $x^2 - y^2 = 9$ (d) $\frac{x^2}{16} + \frac{y^2}{25} = 1$ (3) Which of the following surfaces cannot be covered by a single patch? (a) cylinder (b) torus (c) cone (d) plane (4) The equation of the tangent plane to $x^2 + y^2 = 1$ at (0, 1, 0) is (a) x = 0(b) $x^2 = 1$ (c) x = -1(d) none of these (5) The Gauss map is an identity map on (a) sphere (b) hyperboloid (c) paraboloid (d) plane (6) The Gaussian curvature on a plane is (a) $-1^{\text{dotted boothing}}$ (b) $1^{\text{dotted boothing}}$ (c) $\frac{1}{2}^{\text{dotted boothing}}$ (d) 0 (7) Which of the following maps preserve Gaussian curvature? (c) diffeomorphism (a) local diffeomorphism (d) None of these (b) conformal (8) Which of the following is not a geodesic on the unit sphere? (c) $\overline{\gamma}(t) = (-\cos t, 0, -\sin t)$ (d) $\overline{\gamma}(t) = (t, 0, t)$ (a) $\overline{\gamma}(t) = (\cos t, 0, \sin t)$ (b) $\overline{\gamma}(t) = (-\cos t, 0, \sin t)$ Q.2 Attempt any Seven. [14](a) Is the curve $\overline{\gamma}(t) = (t, t^2, t^2), t \in \mathbb{R}$, planar? Why? (b) Compute the torsion of the curve $\gamma(t) = (t, t^2)$. (c) State Isoperimetric inequality. (d) Define tangent vector and tangent space at a point on a smooth surface. P.T.O.)

- (e) If $I: S \to S$ is the identity map, then show that $D_p I$ is the identity map from $T_p S$ to $T_p S$ for all $p \in S$.
- (f) Compute second fundamental form of $\sigma(u, v) = (u, v, 2u)$.
- (g) Define tangent vector field along a curve on a surface.
- (h) Show that every geodesic on a surface has a constant speed.
- (i) State Bonnet's Theorem.
- Q.3
- (a) Let $\overline{\gamma}: (a, b) \to \mathbb{R}^3$ be a regular curve with nowhere vanishing curvature. If both curvature [6] and torsion of $\overline{\gamma}$ are constant, then show that $\overline{\gamma}$ is part of a circular helix. State the result you use.
- (b) Define reparametrization of a parametrized curve $\overline{\gamma} : (a, b) \to \mathbb{R}^n$. Show that a curve [6] $\overline{\gamma} : (a, b) \to \mathbb{R}^n$ is regular if and only if it has unit speed reparametrization.

OR

- (b) Define vertex of a regular plane curve. Let a, b > 0. Determine all vertices of the curve [6] $\overline{\gamma}(t) = (a \cos t, b \sin t), t \in \mathbb{R}$.
- Q.4
- (c) Define smooth surface. Show that the set $\{(x, y, z) \in \mathbb{R}^3 : z = 2x^2 3y^2\}$ is a smooth [6] surface.
- (d) Show that a local diffeomorphism $f: S_1 \to S_2$ is a local isometry if and only if, for any [6] surface patch σ of S_1 , the patches σ and $f \circ \sigma$ of S_1 and S_2 , respectively, have the same first fundamental form.

 \mathbf{OR}

- (d) (i) Let $f: S_1 \to S_2$ be a local diffeomorphism, and let $\overline{\gamma}$ be a regular curve in S_1 . Show [3] that $f \circ \gamma$ is a regular curve in S_2 .
 - (ii) Compute the surface area of $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 9, 0 < z < 9\}.$ [3]
- Q.5
- (e) Let $\overline{\gamma}$ be a unit-speed curve, and let $\sigma(u, v) = \overline{\gamma}(u) + v\overline{n}(u)$, where \overline{n} is the unit normal of [6] $\overline{\gamma}$. Show that $\overline{\gamma}$ is planar if and only if the Gaussian curvature \mathcal{K} of σ is zero.
- (f) Compute the principal curvatures and the principal vectors of $\sigma(u, v) = (u, v, uv)$ at (0, 0, 0). [6]

OR

- (f) Define umbilic point on a surface. Let $\sigma: U \to \mathbb{R}^3$ be a connected surface patch such that [6] every point is an umbilic. Show that $\sigma(U)$ is a subset of a plane or a sphere.
- Q.6
- (g) Define geodesic on a surface. Let $\overline{\gamma}(t) = \sigma(u(t), v(t))$ be a curve on a regular surface patch σ [6] of a surface S. Show that $\overline{\gamma}$ is a geodesic if and only if $\frac{d}{dt}(E\dot{u}+F\dot{v}) = \frac{1}{2}(E_u\dot{u}^2+2F_u\dot{u}\dot{v}+G_u\dot{v}^2)$ and $\frac{d}{dt}(F\dot{u}+G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2+2F_v\dot{u}\dot{v}+G_v\dot{v}^2)$.
- (h) Define Christoffel's symbols of second kind. If σ is a regular patch, then show that $\sigma_{uu}\sigma_u = [6]$ $\frac{1}{2}E_u, \sigma_{uu}\sigma_v = F_u - \frac{1}{2}E_v, \sigma_{uv}\sigma_u = \frac{1}{2}F_v, \sigma_{uv}\sigma_v = \frac{1}{2}G_u, \sigma_{vv}\sigma_u = F_v - \frac{1}{2}G_u$ and $\sigma_{vv}\sigma_v = \frac{1}{2}G_v$. OR
- (h) (i) Compute the Christoffel's symbols of second kind for the surface $\sigma(u, v) = (u, v, u v)$. [3]
 - (ii) Show that the sum of interior angles of a triangle on sphere is strictly greater than π . [3]

and a second second part of a

(129 &SEAT NO No. of printed pages: 2 SARDAR PATEL UNIVERSITY M.Sc. Mathematics, Semester - II Friday, 10th November, 2017 PS02CMTH04, Functional Analysis - I Time: 02:00 p.m. to 05:00 p.m. Maximum marks: 70 Note: Figures to the right indicate marks of the respective question. Assume standard notations wherever applicable. Q-1 Choose the most appropriate option for each of the following questions: [8] 1. Let x, y be elements of an inner product space X over \mathbb{C} . Then $\langle x+y,x+y\rangle-\langle x-y,x-y\rangle+i\langle x+iy,x+iy\rangle-i\langle x-iy,x-iy\rangle=____$ (a) $\frac{1}{4}\langle x,y\rangle$ (b) $4\langle x, y \rangle$ (c) $\langle x, y \rangle$ (d) 0 2. If $E = \{x, y\}$ is subset of an inner product space with ||x|| = ||y|| = 1 and $\langle x, y \rangle = 0$, then the diameter of E is _____. (a) 0 (b) 1 (c) 2(d) $\sqrt{2}$ 3. If E is a convex subset of a Hilbert space H and $x \in H$, then the number of best approximation from E to x is _____. (a) at most 1 (b) 0 (c) 1(d) infinite 4. If $\{u_n\}$ is an orthonormal basis of an infinite-dimensional Hilbert space, then _____. (c) $u_n \to 0$ weakly (a) $||u_n|| \to 0$ (b) $u_n \to 0$ (d) $\{u_n\}$ is Cauchy 5. Let H be a Hilbert space and $T \in BL(H)$ be one-one. Then _____. (b) $R(T^*) = H$ (c) $\ker(T^*) = H$ (a) $R(T^*) = H$ (d) $\ker(T^*) = \{0\}$ 6. Let H be a Hilbert space, $S, T \in BL(H)$ be self-adjoint. Then _____ is self-adjoint. (b) ST^2 (a) ST(c) S^2T (d) S-T7. Let H be an infinite-dimensional Hilbert space over \mathbb{C} and $T \in BL(H)$. If $\lambda \in \mathbb{C}$ be such that $T - \lambda I$ is not invertible, then _ (a) $\lambda \in \sigma_a(T)$ (b) $\lambda \in \sigma_e(T)$ (c) $\lambda \in \sigma(T)$ (d) none of these 8. Let H be a finite dimensional Hilbert space and $T \in BL(H)$. Then _____ (a) T is self-adjoint (b) T is normal (c) T is unitary (d) T is compact Q-2 Attempt Any Seven of the following: |14|(a) State and prove Parallelogram law for an inner product space. (b) Define inner product. (c) Compute the Gram matrix of $x_1 = (2, -1, -1)$, $x_2 = (0, 1, -1)$ and $x_3 = (1, 1, 1)$. (d) Let X be an inner product space and $f: X \to \mathbb{C}$ be defined by $f(x) = \langle x, y \rangle$, $x \in X$. Show that f is linear. (e) Let H be a Hilbert space and $T \in BL(H)$ be bounded below. Show that T is one-one. (f) Let H be a Hilbert space and $T \in BL(H)$. Show that $\ker(T) = \ker(T^*T)$. (g) Let H be a Hilbert space and $T \in BL(H)$. Show that T is isometry if and only if $T^*T = I.$

7

(P.FO.)

Sc

(h) Let H be a Hilbert space over K, where $K = \mathbb{R}$ or \mathbb{C} . Let $T \in BL(H)$ and $\lambda \in K$. Show that $\lambda \in \sigma(T)$ if and only if $\lambda \in \sigma(T^*)$. (i) If $\lambda, \mu \in \sigma_e(T)$, $\lambda \neq \mu$ and $x \neq 0, y \neq 0$ are such that $Tx = \lambda x$ and $Ty = \mu y$, then show that $\langle x, y \rangle = 0$. **Q-3** (a) Let X be an inner product space. Show that $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$, for all $x, y \in X$ [6] and the equality holds if and only if x and y are linearly dependent. [6] (b) Let X be an inner product space and E be an orthonormal subset of X. Show that for each $x \in X$, the set $E_x = \{u \in E : \langle x, u \rangle \neq 0\}$ is countable. (b) Show that $(\ell^p, \|\cdot\|_p)$ is an inner product space if and only if p = 2. 6 Q-4 (a) State and prove Riesz-representation theorem. [6] (b) Let E be a non-empty closed, convex subset of a Hilbert space H and $x \in H$. [6] Then show that there is a unique best approximation from E to x. OR (b) State and prove Projection theorem. 6 Q-5 (a) Let H be a Hilbert space and $T \in BL(H)$. Show that there exists a unique [6] $S \in BL(H)$ such that $\langle Tx, y \rangle = \langle x, Sy \rangle$ for all $x, y \in H$. (b) Let H be a Hilbert space and $T \in BL(H)$. If T^* is bounded below then show that [6]T is onto. OR (b) Let H be a Hilbert space and $S, T \in BL(H)$ be normal. If S commutes with T^* [6] and T commutes with S^* then show that S + T and ST are normal. **Q-6** (a) Let *H* be a Hilbert space, $T \in BL(H)$. Show that $\sigma(T) = \sigma_a(T) \cup \{\bar{\mu} \mid \mu \in \sigma_e(T^*)\}$. [6] (b) Let H be a Hilbert space and $T \in BL(H)$ be compact. Show that T^* is compact. [6] OR (b) Let H be a Hilbert space and $T \in BL(H)$ be compact. Let $\lambda \in \sigma_a(T)$ and $\lambda \neq 0$. [6] Then show that $\lambda \in \sigma_e(T)$ and $\ker(T - \lambda I)$ is finite-dimensional.

арарананананананана

	CA	L19) SEAT No.	v ∴ vig	
	C.	SARDAR	PATEL UNIVERSITY	No. of printed pages: 2
			mester II) Examination	
		-11-2017, Monday		Time: 2.00 To 5.00 p.m.
	•	MATHEMATICS p. PS02CMTH05 – (Methods o	f Partial Differential Equ	ations) Total Marks: 70
1.		Choose the correct option for e	ach question:	[8]
	(1)	The equation $(D' + 3)^2(2D' + D^2)$		
			(c) (4, 1)	
	(2)	The equation $p^2 + q^2 = 0$ is same (a) $(D + D')^2$ (b) $(D^2 + D)^2$		
	(3)	Which of the following equation (a) $2D^2 + D'$ (b) D^2D'	on is reducible? (c) 2 + 4DD [/]	(d) $3D' - D + D'^2$
	(4)	The equation $(9xD^2 - 3yDD' +$		
	(5)	Which of the following equation (a) $x^2r - xys = 0$ (b) $x^2r - y$		
	(6)	The equation r + s - t = xy can (a) General method (c) Polynomial method	not be solved by (b) Monge's met (d) changing u =	
	(7)	The solution of Dirichlet BVP (a) 0 (b) unique	(if exists) is e (c) not unique	(d) none of these
	(8)	The Poisson Integral formula c (a) Dirichlet BVP (b) Neumann BVP	an be obtained from (c) Harnack's Th (d) Green's Ident	
2.		Attempt ANY SEVEN:		[14]
	(a)	Define complementary functio	n and particular integral of	the equation.
	(b)	Eliminate functions f and g and	d obtain a pde: u = f(x - 2i	y) + g(x + 2iy).
	(c)	Write the equation into $\partial/\partial x$,	$\frac{\partial}{\partial y}$ form: D(2D ² + 3D ^D	(+2D)z = 0.
	(d)	Find the complementary funct	ion of the equation: $(4D^2 -$	-D')z = x - 2y.
	(e)	Find D^2z , if x and y in $z = z(x, x)$		
	(f)	Classify region in which equat	ion $(2xD^2 + yD'^2 - 2yD' + x)$	xD)z = 0 is elliptic.
	(g)	Write the Laplace equation in	cylindrical co-ordinate syst	em.
	(h)	State Green's Identity.		
	(i)	What is boundary value proble	em?	
				CP.T.O.)

,

•

SC

.3.	(a)	If $(\beta D' + \gamma)^2$ is a factor of F(D, D'), then prove that $e^{-\frac{\gamma}{\beta}y} [\phi_1(\beta x) + y\phi_2(\beta x)]$ is a solution of F(D, D')z = 0, where ϕ_1 and ϕ_2 are arbitrary functions of a single variable ξ .	[6]
	(b)	Find the general solution of ANY ONE of the following equations:	[6]
		(i) $(D + 3D')(2D - D' + 1)z = x + 2y + e^{(x - 2y)}$. (ii) $(D^2 - DD' + D' - 1)z = \cos(x + 2y) + e^{y}$	
4.	(a)	Convert the following equation into canonical form:	[6]
		$y(x + y)(r - s) - xp - yq = 0, (y \neq 0, x \neq -y)$	
	(b)	Using Monge's method, solve ANY ONE of the following equations:	[6]
		(i) $r + s - 2t = y$ (ii) $(rt - s^2) + 4 = 0$.	
5.	(a)	Find the general solution of equation: $(x^2D^2 - 4y^2D'^2 - 6yD')z = 0$.	[6]
	(b)	Solve the Wave equation in Cartesian coordinates, by method of separation	[6]
		variable and show that solution is $\psi(x,y,z,t) = e^{\pm i (lx + my + nz + kct)}$ where l, m, n	
		and k are constants with $l^2 + m^2 + n^2 = k^2$.	
		OR	
	(b)	By separating the variables, find the solution of three dimensional Diffusion	[6]
		equation in cylindrical coordinate system.	
6.	(a)	Solve interior Dirichlet problem for a function $\phi = \phi(r, \theta)$ for circle and show	[6]
		that solution is of the form $\phi(r, \theta) = \sum_{n=0}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta)$, with A_n, B_n	
		are constants.	
	(b)	State and prove Maximum principle.	[6]
		OR	
	(b)	Define equipotential surfaces and show that the family of surfaces	[6]
		$x^{2} + y^{2} + z^{2} = c^{2}$ can form an equipotential family of sufaces.	

Х-Х-Х-Х-Х-Х

.

,

(2)

	[SI	EAT Mo	5			-
	[90]	SARDAR PATE M. Sc. (Semester		No. of printed pages	: 2
		15-11-2017 t: MATHEMATIC		9 S02EMTH02 – (G1	Time: 2.00 To 5.00 p.1 raph Theory – I) Total Marks: 7	
1.		Choose the correct	option for each que	stion:		[8]
	(1)	The diameter of th	e graph K_n (n > 1) is	5		
		(a) 1	(b) 2	(c) n	(d) n – 1	
	(2)	Let T be a spanning (a) d ⁻ (R) > 0	-		> 0 (d) none of these	
	(3)	For $G = C_n$ with clo (a) n		ank(B) is (c) 1	(d) none of these	
	(4)	If G is a complete s	symmetric digraph v	with n vertices, then	E(G) =	
		(a) $n(n-1)$	(b) n	(c) $\frac{n(n-1)}{2}$	(d) n^2	
	(5)	The coefficient c ₅ i (a) 5	n chromatic polynoi (b) 5!	mial of P_5 is (c) 5^2	(d) 5^5	
	(6)	Which of the follow (a) K _{n, 1}	ving graphs is Hami (b) K _{n, 2n}		(d) P _n	
	(7)	Let G be a simple g (a) maximum \Rightarrow (b) maximal \Rightarrow p	-	ed vertex. Then a m (c) maximal \Rightarrow n (d) maximum \Rightarrow	naximum	
	(8)	If $G = P_{51}$, then (a) $\alpha(G) > \beta(G)$	(b) $\alpha(G) < \beta(G)$	(c) $\alpha(G) = \beta(G)$	(d) $ \alpha(G) = \beta(G) $	
2.		Attempt any SEVE	EN:			[14]
	 (a) (b) (c) (d) (e) (f) (g) (h) (i) 	Define spanning in Define fundamenta Prove: If G is a bip What is Four color Prove: The graph & Prove or disprove:	A symmetric digrap -tree and give one e l circuit matrix in a artite graph, then χ (xample of it. digraph. (G) = 2. tching. morphic to $K_{2,2}$.	Jh.	- -

.

.

SC

3.	(a)	Define the following with examples:	[6]
		(i) Simple Digraph (ii) in-degree & out-degree (iii) Strongly Connected Digraph.	
	(b)	Define regular digraph and balanced digraph and discuss the relation between them. OR	[6]
	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.	[6]
4.	(a)	Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G without self-loop. Then prove that $AB^{T} = 0$.	[6]
	(b)	Prove: An arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
		OR	
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n -vertices $v_1, v_2,, v_n$ such	[6]
		that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2,, n$.	
5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \leq S $.	[6]
	(b)	Find chromatic polynomial for the graph $K_{2,2}$. OR	[6]
	(b)	Define chromatic number $\chi(G)$ of a graph G. Give an example of a non-complete graph G with $\chi(G) = \Delta(G) + 1$.	[6]
6.	(a)	Let G be a graph (no isolated vertex) with n vertices. Prove that $\alpha'(G) + \beta'(G) = n$.	[6]
	(b)	Prove: A matching M in graph G is maximum if and only if G has no M-augmenting path.	[6]
		OP	

- OR
- (b) Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = K_{n, m}$ ($n \neq m$). [6]

x-**-X-X-x--

2

SEAT No	and and and the		No. of printed pages: 2	
PS02 Time: 02:00 p.m. Note: All the questio	ns are to be answered i	ics, Semester - II November, 2017 tical Classical Mech Ma n answer book only. F	anics aximum marks: 70 Figures to the right indi ions wherever applicabl	1
· · · ·	appropriate option for (s		[8]
	rticle in space is			[-]
(a) a holonomi2. Degrees of free(a) 0	c (b) a non-holon dom of a double pendul (b) 1	omic (c) a rheon um is (c) 2	(d) 3	
	epend on q_j explicitly, t (b) L			
	a Brachistochrone curv		(u) total onorgj	
(a) Great circl	e (b) Cycloid inates of a system are n	(c) Straight line		
(a) <i>L</i>	(b) <i>H</i>	(c) $-L$	(d) $-H$	
(a) $rac{\partial H}{\partial p_j} = -q_j$	he following is correct? (b) $H = h$ he following is correct?	(c) $\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$	(d) none of these	
(b) Symplectic(c) Canonical(d) A symplect	tic matrix is invertible. matrices does not form transformations are not tic matrix is singular. 3 degrees of freedom, the (b) 10	invertible.	$5q_3, 3q_2] = $ (d) -6	<i>.</i>
Q-2 Attempt Any Se	even of the following:			[14]
	omic constraint and give	e its example.		. ,
	ge's equations of motion	_	is present.	
, , <u> </u>	on's equations of motior		*	
	dition for extremum of			
	of <i>n</i> -degrees of freedom			
	cyclic coordinate is igno	· · · · · · · · · · · · · · · ·		T
	nsformation equations for			
	tions, show that $[u, u] =$		J <u>r</u>	
(i) Define canoni	acal transformation and s or all $i = 1, 2,, n$ is c	how that the identity t	ransformation $Q_i = q_i$	
	Page 2	l of 2		

SC

- Q-3 (a) Using D'Alembert's principle, derive Lagrange's equations of motion in general [6] form.
 - (b) Stating degrees of freedom obtain Lagrange's equations of motion for a spherical [6] pendulum.

OR

- (b) Derive the expression $T = T_0 + T_1 + T_2$ of kinetic energy in usual notations. [6]
- **Q-4** (a) Derive the condition for extremum of the line integral $\int_{x_1}^{x_2} f(y, \dot{y}, x) dx$.
 - (b) The Lagrangian of a system is given by $L = \frac{m}{2}(\dot{\theta}^2 + \sin^2\theta \,\dot{\phi}^2) + mg\cos\theta$. Find [6] the energy function. Is it conserved? Justify your answer.

[6]

[6]

[6]

OR

- (b) Obtain the solution of Euler's equation for Brachistochrone problem, where the [6] function $f = \sqrt{\frac{1+\dot{x}^2}{2gy}}$.
- Q-5 (a) State Hamilton's modified principle and hence derive Hamilton's equations of [6] motion from it.
 - (b) Lagrangian of a system is given by $L = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) + \frac{k}{r}$. Derive Routhian [6] equations of motion for the system.

OR

- (b) Discuss principle of least action.
- Q-6 (a) Describe the method of solving a dynamical problem using Poisson bracket for- [6] malism.
 - (b) Using symplectic condition show that the following transformation is canonical: [6]

$$Q = \log\left(\frac{\sin p}{q}\right), \quad P = q \cot p.$$

OR

(b) If u is a dynamical quantity of a system and H is Hamiltonian, then show that

$$\frac{du}{dt} = [u, H] + \frac{\partial u}{\partial t}.$$

Hence deduce that if u and v do not depend on t explicitly and they are constants of motion, then [u, v] is a constant of motion.

#