[53/A-18]

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester II

Monday, 10 April 2017

10.00 a.m. to 1.00 p.m.

PS02CMTH01 - Real Analysis I

Maximum Marks: 70

				· -		
	Fill in the b Let $E = 0.0$	clanks. Then $m(E)$:			[8]	
(+)			(c) 2	(d) none of these		
(2)			$(x_n - \frac{1}{n^2}, x_n + \frac{1}{n^2})$. The			
` '			$\infty \qquad (c) \ m(A) < \infty$			
(3)			$(x) = 2$ for all $x \in E$. The			
		(b) 2	(c) $2 + m(E)$			
(4)	Let $f:[a,b]\to\mathbb{R}$ be bounded and A be the set of discontinuity of f . Then f is Riemann integrable if and only if					
	(a) A is a f (b) A is a c	inite set countable set	(c) A has measu (d) $m(A) > 0$	re 0		
(5)	If f is integrated	cable over E , then $\int_E f$				
	(a) $\int_{E} f^{+} -$	$-\int_E f^-$ (b) $\int_E f^+ + \int$	$\int_E f^- (c) \int_E f^ \int_E f$	+ (d) none of these		
(6)	Let f and g be integrable functions on E such that $\int_E f = \int_E g$. Then					
		$\text{e.} \qquad \text{(b) } f \leq g$		(d) none of these		
(7)	The total va	riation of $f(x) = x^2$ or	ver [0, 2] is			
	(a) 1	(b) 2	(c) 4	(d) 8		
(8)	Let f be abs	solutely continuous on	[a, b]. Which of the following	owing is not true?		
	(a) f is con(b) f is of l	tinuous. bounded variation.	(c) f is different(d) f is different			
(a) (b) (c) (d)	Give an example f is measured Let $f:[0,1]$ integrable?	very countable subset mple of a non-measural arable, then show that $f(x) = 0$ if the why?	ble function. $f^{-1}(a,b)$ is a measurable $x \in \mathbb{Q}$ and $f(x) = 1$ if $x \in \mathbb{Q}$	le set. $x\in\mathbb{R}-\mathbb{Q}.$ Is f Riemann le set $E.$ If $\int_E f=0$, then	[14]	
	show that f	= 0 almost everywher cone Convergence Theo	e.	- <i>u</i> -		

- (g) Give an example of a sequence $\{f_n\}$ of measurable functions and a measurable function f on a measurable set E such that $f_n \to f$ but $\{\int_E f_n\}$ does not converge to $\int_E f$.
- (h) If f and g are absolutely continuous on [a, b], then show that fg is absolutely continuous.
- (i) Suppose that $f \leq g$ a.e. on E. Then show that $\int_E f \leq \int_E g$.

Q.3

- (a) Let $\{E_n\}$ be a decreasing sequence of measurable subsets of \mathbb{R} and $m(E_1) < \infty$. Show that $m(\bigcap_n E_n) = \lim_n m(E_n)$. Also, show that it is not true if $m(E_k)$ is not finite for some k.
- (b) Let $\{f_n\}$ be a sequence of measurable functions. Show that $\liminf_n f_n$ and $\limsup_n f_n$ [6] are measurable. Deduce that $\lim_n f_n$ is measurable if the sequence $\{f_n\}$ is convergent.
- (b) Show that the collection \mathcal{M} of measurable subsets of \mathbb{R} is a σ -algebra. [6] Q.4
- (c) Let E be a measurable set of finite measure, and $\{f_n\}$ a sequence of measurable [6] functions defined on E. Let f be a real valued function such that $f_n(x) \to f(x)$ for all $x \in E$. If $\epsilon > 0$ and $\delta > 0$, then show that there is a measurable set $A \subset E$ with $mA < \delta$ and an integer N such that $|f_n(x) f(x)| < \epsilon$ for all $x \in E A$ and n > N.
- (d) Define Lebesgue integral of a bounded measurable function f on a measurable set E of finite measure. If f, g are measurable bounded measurable functions on a measurable set E of finite measure and $a, b \in \mathbb{R}$, then show that $\int_{E} (af + bg) = a \int_{E} f + b \int_{E} g$.

OR

(d) State and prove Bounded Convergence Theorem.

[6]

- Q.5
 (e) Let f be a nonnegative measurable function on a measurable set E and $\{E_n\}$ be a sequence of pairwise disjoint measurable sets such that $E = \bigcup_n E_n$. Then prove that $\int_E f = \sum_n \int_{E_n} f$. State the results you use.
- (f) If f is integrable over E, then show that |f| is integrable over E and $|\int_E f| \le \int_E |f|$. [6] Does the integrability of |f| imply the integrability of f? Why?
- (f) Let f_n , f be measurable functions on E. When do we say that $\{f_n\}$ converges to f in measure? If $\{f_n\}$ converges to f in measure, then show that $\{f_n\}$ has a subsequence which converges to f almost everywhere.

Q.6

- (g) When is a function $f:[a,b] \to \mathbb{R}$ called a function of bounded variation? Show that [6] a function f is of bounded variation on [a,b] if and only if f is the difference of two monotone real-valued functions on [a,b].
- (h) If f is bounded and measurable on [a, b] and $F(x) = \int_a^x f(t)dt$ for all $x \in [a, b]$, then [6] show that F'(x) = f(x) for almost all x in [a, b]. Also, show that F is of bounded variation on [a, b].
- (h) Show that every absolutely continuous function is the indefinite integral of its deriv- [6] ative.

Self 10.

[38/A-15]

No of printed pages: 2

Sardar Patel University

Mathematics
M.Sc. Semester II
Saturday, 15 April 2017
10.00 a.m. to 1.00 p.m.
PS02CMTH03 Differential Geometry

Maximum Marks: 70

			1	viaximum iviarks: 70	
		option for each of the $+b^2 \neq 0$. Then $\overline{\gamma}(t)$:		is planar iff	[8]
	(a) $a = 0$ or $b = 0$	(b) $a = 0$	(c) $\dot{p} = 0$	(d) $a \neq 0$ and $b \neq 0$	•
(2)	How many vertices	does a circle have?			
	(a) 0	(b) 1	(c) 4	(d) infinitely many	
(3)	Let $f: \mathcal{S}_1 \to \mathcal{S}_2$ be a true?	a local diffeomorphisi	m and $p \in \mathcal{S}_1$. Which	h of the following is not	
	(a) $D_p f$ is linear	(b) $D_p f$ is onto	(c) $D_p f$ is isometry	$V(\mathbf{d})$ $D_p f$ is one one	
(4)	Minimum number o	f patches required to	cover circular cylind	$ler x^2 + y^2 = 1 is$	
	(a) 1	(b) 2	(c) 4	(d) 6	
(5)	Which of the following	ng is not an oriented	surface?		
	(a) Mobius strip	(b) torus	(c) plane	(d) sphere	
(6)	The mean curvature	of $\sigma(u, v) = (2u, 3v,$	2u + 3v) at the point	at $(2,3,5)$ is	
	(a) 2	(b) 3	(c) 5	(d) none of these	^-
(7)	Let $\overline{\gamma}$ be a curve on	a surface \mathcal{S} . Then $\overline{\gamma}$			
	(a) $\kappa_g = 1$	(b) $\kappa_n = 0$	(c) $\kappa_g^2 + \kappa_n^2 = \kappa^2$	(d) $ \kappa_g = 0$	
(8)	Let $\overline{\gamma}$ be a curve on	ector field along $\overline{\gamma}$?			
	(a) $\dot{\overline{\gamma}}$	(b) $\ddot{\overline{\gamma}}$	(c) $\dot{\overline{\gamma}} + \ddot{\overline{\gamma}}$	(d) $\dot{\overline{\gamma}} \times \ddot{\overline{\gamma}}$	
(a)	2.2 Attempt any Seven. a) Compute the signed curvature of $\overline{\gamma}(t) = (\sin t, \cos t)$. b) Show that tangent vectors to $\overline{\gamma}(t) = (\cos t, \sin t, t)$ make a constant angle with the z-				[14]
(0)	axis.	$\gamma(t) = (\cos t)$	t, sin t , t) make a co.	ustam angle with the z-	
 (c) Show that a reparametrization of a regular curve is regular. (d) Show that {(x, y, z) : x² + y² = z²} is not a surface. (e) Compute the surface area of {(x, y, z) ∈ R³ : x² + y² + z² = 4, x > 0}. 					i ya
(f)	Let $\overline{\gamma}$ be a unit-spe normal curvature of		ted surface. Define	geodesic curvature and	

that $\overline{\mathbf{N}}_u \sigma_u = -L$, $\mathbf{\hat{\overline{N}}}_u \sigma_v = -M = \overline{\mathbf{N}}_v \sigma_u$ and $\overline{\mathbf{N}}_v \sigma_v = -N$.

(g) Let σ be a surface patch of an oriented surface with the unit normal $\overline{\mathbf{N}}$. Then show

- (h) Define Christoffel's symbols of second kind for a regular surface patch $\sigma: U \to \mathbb{R}^3$.
- (i) State Gauss' Theorema Egregium.

Q.3

- (a) Let $\overline{\gamma}: \mathbb{R} \to \mathbb{R}^2$ be a simple closed curve. Let $M: \mathbb{R}^2 \to \mathbb{R}^2$ be a direct isometry. [6] Show that $\overline{\gamma}$ and $M \circ \overline{\gamma}$ have the same length and the same area of interior.
- (b) Let $\overline{\gamma}$ be a unit-speed curve in \mathbb{R}^3 with nowhere vanishing curvature, and let $\overline{\mathbf{t}}$ be the [6] unit tangent of $\overline{\gamma}$. Is the curve $\overline{\alpha} = \overline{\mathbf{t}}$ regular? Find the curvature and torsion of $\overline{\alpha}$.

OR

[6]

(b) Show that

 $\int_0^{2\pi} \sqrt{81\sin^2 t + 16\cos^2 t} \, dt > 12\pi.$

State the result you use.

Q.4

- (c) Define smooth surface. Show that open subset of a smooth surface is a smooth surface. [6]
- (d) Explain stereographic projection. Hence give an example of a conformal map which is not a local isometry.

OR.

(d) Define the first fundamental form at a point p on a smooth surface S. Let $\sigma: U \to \mathbb{R}^3$ [6] be a regular patch, and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be an isometry. Show that σ and $T \circ \sigma$ have the same first fundamental forms.

Q.5

- (e) Let $\overline{\gamma}:(a,b)\to\mathbb{R}^3$ be a unit-speed curve with nowhere vanishing curvature, and let \overline{t} be the unit tangent of $\overline{\gamma}$. Let $\sigma:(a,b)\times(0,\infty)\to\mathbb{R}^3$ be $\sigma(u,v)=\overline{\gamma}(u)+v\overline{t}(u)$. Compute the Gaussian curvature and mean curvature of σ . Also, show that the mean curvature of σ is zero if and only if $\overline{\gamma}$ is planar.
- (f) Define principal curvatures and principal vectors at a point on an oriented surface. [6] Compute the principal curvatures of $\sigma(u, v) = ((b+a\cos v)\cos u, (b+a\cos v)\sin u, a\sin v)$, where b > a > 0.
- (f) When is a point on a surface called *umbilic*? Show that a point p on a surface S is umbilic if and only if W_p is a scalar multiple of identity. Also, show that every point of $\sigma(u,v) = (u,v,u+v)$ is umbilic.

Q.6

- (g) Consider the surface of revolution $\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u))$, where f > 0 [6] and $f'^2 + g'^2 = 1$. Then prove the following statements.
 - (1) The curves $\overline{\alpha}(t) = \sigma(u(t), v_0)$ are geodesics.
 - (2) A curve $\overline{\beta}(t) = \sigma(u_0, t)$ is a geodesic if and only if $f'(u_0) = 0$.
- (h) Let σ be a surface patch of an oriented surface S. Show that $L_v M_u = L\Gamma_{12}^1 + [6]$ $M(\Gamma_{12}^2 \Gamma_{11}^1) N\Gamma_{11}^2$ and $M_v N_u = L\Gamma_{22}^1 + M(\Gamma_{22}^2 \Gamma_{12}^1) N\Gamma_{12}^2$.

OR

(h) Let S be a surface such that its Gaussian curvature is -1 everywhere. Show that the [6] sum of interior angles of a triangle on S is less than π . State the result you use.

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - II Examination Tuesday, 18th April, 2017 PS02CMTH04, Functional Analysis - I

Time: 10:00 a.m. to 1:00 p.m.	Maximum marks: 70
Note: All the questions are to be answered in full marks of the respective question. As	answer book only. Figures to the right indicate ssume standard notations wherever applicable.
Q-1 Choose the most appropriate option for ea	ah of the following
1. Let H be a Hilbert space and $x, y \in H$	the orthonormal. Then $ x - y ^2 - $
(a) 4 (b) 2	(c) (1) (5)
2. Let $H = \mathbb{C}^2$ be Hilbert space over \mathbb{C} a $\langle x, y \rangle = \underline{\hspace{1cm}}$ is an inner product on H .	and $x = (x_1, x_2), y = (y_1, y_2) \in H$. Then
(a) $x_1 \overline{y}_1 + 5x_2 \overline{y}_2$ (b) $\overline{x}_1 y_1 + \overline{x}_2 y_2$	(c) $x_1\overline{x}_2 + y_1\overline{y}_2$ (d) $x_1\overline{y}_1 - x_2\overline{y}_2$
3. If E is a non-empty subset of a Hilbert best approximation from E^{\perp} to x is	space H and $x \in H$ then the number of
(a) 0 (b) 1	(c) 2 (d) infinite
4. Let H be a Hilbert space and x_1, x_2, x_3 matrix	$\in H$ be orthonormal. Then their Gram
(a) is identity matrix	(c) is singular
(b) is a zero matrix	(d) cannot be computed
5. Let H be a Hilbert space and $T \in BL(X)$ true.	H) be isometry. Then need not be
 (a) T is one-one (b) T is bounded be 6. Let H be a Hilbert space and S, T ∈ B adjoint. 	elow (c) T is onto (d) T^* is onto $L(H)$ be self-adjoint. Then is self-
 (a) ST (b) 2T + 3iS 7. Let H be a Hilbert space and T ∈ BL(H) 	(c) $2S + 3iT$ (d) $2S + 3T$
(a) $\sigma(T) \subset \sigma_a(T)$ (b) $\sigma_a(T) \subset \sigma_e(T)$	(c) $\sigma_o(T) \subset \overline{W(T)}$ (d) $\sigma_o(T) \subset W(T)$
8. Let H be a Hilbert space and $T \in BL(H)$ Then $\ker(T - \lambda I)$ is	be non-zero compact and $0 \neq \lambda \in \sigma_e(T)$.
(a) $\{0\}$ (b) H (c) infinite d	imensional (d) finite dimensional
Q-2 Attempt Any Seven of the following:	. [14]
(a) Let H be Hilbert space and $T \in BL(H)$ $x, y \in H$. Show that $\langle \cdot, \cdot \rangle_T$ is an inner p	7). Define $\langle \cdot, \cdot \rangle_T$ by $\langle x, y \rangle_T = /T_T T_2 $
(b) State and prove Parallelogram law for an	inner product space.
(c) Let H be a Hilbert space and $\phi \neq E \subset I$	
(d) Show by an example that, in a Hilbert need not be convergent.	space H , a weakly convergent sequence

(e) Let H be a Hilbert space and $T \in BL(H)$. Show that $\ker(T) = \ker(T^*T)$.

(f)	Let H be Hilbert space over \mathbb{C} and $S \in BL(H)$. Show that there exists self-adjoint operators $A, B \in BL(H)$ such that $S = A + iB$.	
(g)	Define Hilbert-Schmidt operator.	
(h)	Let T be the right-shift operator on ℓ^2 , i.e. $T(x(1), x(2), \ldots) = (0, x(1), x(2), \ldots), (x(1), x(2), \ldots) \in \ell^2$. Show that $0 \in \sigma(T)$ but $0 \notin \sigma_a(T)$.	
(i)	Let H be a Hilbert space and $T \in BL(H)$. If $S: H \to H$ be linear and compact, then show that ST is compact.	
Q-3 (a)	State and prove Bessel's inequality.	[6]
(b)	Let X be an inner product space and E be an orthonormal subset of X. Show that for each $x \in X$, the set $E_x = \{u \in E : \langle x, u \rangle \neq 0\}$ is countable.	[6]
	OR	
(b)	State Gram-Schmidt orthonormalization theorem. Apply Gram-Schmidt process to orthonormalize the set $\{x_1, x_2, x_3, x_4\}$, where $x_1 = (1, 0, 0, 0)$, $x_2 = (1, 1, 0, 0)$, $x_3 = (1, 1, 1, 0)$, $x_4 = (1, 1, 1, 1) \in \mathbb{R}^4$.	[6]
Q-4 (a)	State and prove unique Hahn-Banach extension theorem.	[6]
	Let $E \neq \phi$ be a closed convex subset of a Hilbert space H . Then show that E contains a unique element of minimum norm.	[6]
	OR	
(b)	State and prove Riesz-representation theorem.	[6]
Q-5 (a)	Let H be a Hilbert space and $T \in BL(H)$ be such that T^* is bounded below. Show that $R(T) = H$.	[6]
(b)	Let H be a Hilbert space and $T \in BL(H)$. Show that T is unitary if and only if T is an onto isometry.	[6]
	\mathbf{OR}	
(b)	Let H be a Hilbert space and $T \in BL(H)$ be self-adjoint. Show that $ T = \sup\{ \langle Tx, x \rangle : x \in H, x \le 1\}.$	[6]
Q-6 (a)	Let H be a Hilbert space and $T \in BL(H)$. Define numerical range $W(T)$ of T . If T is self-adjoint then show that $m_T \in \sigma_a(T)$, where $m_T = \inf\{\lambda : \lambda \in W(T)\}$.	[6]
(b)	Show that every Hilbert-Schmidt operator T on a separable Hilbert space H is compact.	[6]
	OR	,
(b)	For a Hilbert space H , show that if $T \in BL(H)$ is compact then T^* is compact.	[6]
	·	

(d) Classify the region in which the equation $(D^2 - 3yDD' + D'^2)z = 0$ is hyperbolic.

(e) Find u = u(x, y) and v = v(x, y) to covert r = t in the canonical form.

(f) Find D^2z where z=z(x,y) is transformed by $u=\log x$ and $v=\log y$.

(g) Write down wave equation in spherical coordinates.

(h) State Green's theorem.

(i) Define equipotential surface.

Q.3

- (a) If $(\beta D' + \gamma)^2$ $(\beta \neq 0)$ is a factor of F(D, D'), then prove that $e^{-\frac{\gamma}{\beta}y}[\phi_1(\beta x) + y\phi_2(\beta x)]$ [6] is a solution of F(D, D')z = 0, where ϕ_1 and ϕ_2 are arbitrary functions.
- (b) Find the general solution of $(D^2 + 2DD' 8D'^2)z = (3y + 2x)^{\frac{1}{2}}$. [6]

 $^{
m OR}$

(b) Find the general solution of $(3D^2 - 2D'^2 + D - 1)z = 4e^{x+y}\cos(x+y)$.

Q.4

(a) Find canonical form of $r + x^2t = 0$.

[6]

(b) Solve: $3s + rt - s^2 = 2$ using Monge's method.

[6]

OR

(b) Solve: $q^2r - 2pqs + p^2t = 0$ using Monge's method.

Q.5

(a) Solve: $(y^2D'^2 - 2xyDD' + yD')z = xy$.

[6]

(b) Solve $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{1}{k} \frac{\partial \varphi}{\partial t}$ by the method of separation of variables and show that the solution can be put in the form of $\varphi(x, y, t) = e^{i(nx+my)-k(n^2+m^2)t}$, where n and m are constants.

OR

(b) Solve $\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\partial^2 \psi}{\partial z^2} = 0$ by the method of separation of variables and show that the solution can be put in the form $\psi(r,\theta,z) = J_n(mr)e^{(mz+in\theta)}$, where m is constant and J_n is a Bessel's function of order n.

Q.6

(a) State and prove maximum principle.

[6]

(b) Find u = u(x, y) such that $\nabla^2 u = 0$ in $\{(x, y) : 0 \le x \le a, 0 \le y \le b\}$ with

[6]

- $u(x,0) = f(x), 0 \le x \le a$
- $u(a, y) = 0, \quad 0 \le y \le b$
- $u(x,b) = 0, \quad 0 \le x \le a$
- $u(0,y) = 0, \quad 0 \le y \le b.$

OR.

(b) Discuss the Neumann interior BVP for a circle.

* * * *

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester II) Examination

	N	I. Sc. (Semeste	r II) Examination	ı	
Date:	22-04-2017			Time: 10.00 To	01.00
Subjec	et: MATHEMATICS	Paper No. 1	Paper No. PS02EMTH02 – (Graph Theory – I)		
v				Total Ma	rks: 70
1.	Choose the correct op	tion for each qu	estion:		[8]
(1)	The diameter of the g	$raph K_{1,n} (n > 1)$	l) is	8	
	(a) 1	b) 2	(c) n	(d) $n+1$	
(2)	A regular digraph is (a) Euler (b) connected	(c) balanced	(d) none of these	
(3)	For $G = C_n$ with clock (a) 1 (twise direction, b) n-1	rank(B) is (c) n	(d) none of these	
(4)	If G is a complete syn	nmetric digraph	with n vertices, th	E(G) =	
		b) n	(c) $n(n-1)$	(d) n^2	
(5)	The coefficient c ₅ in c (a) 5 ⁵	chromatic polyn b) 5 ²	nomial of P ₅ is (c) 5	(d) 5!	
(6)	Which of the following (a) K _n	ng graphs is not (b) K _{n, n}	Hamiltonian? (c) P _n	(d) C _n	
(7)	 Let G be a simple graph without is (a) maximum ⇒ perfect (b) maximum ⇒ maximal 		ated vertex. Then a (c) maximal = (d) maximal =	⇒ maximum	in the gradient of the second
(8)		G), β (G)) = (b) (4, 4)	(c) (4, 3)	(d) (3,4)	
2.	Attempt any SEVEN	:			[14]
(a) (b) (c) (d) (e) (f) (g) (h)	Prove or disprove: A Define incidence ma Define fundamental of Prove: If G is a bipar What is Four color p Prove or disprove: A Prove or disprove: T	balanced digrapherix in a digraphericuit matrix in tite graph, then roblem? minimal vertex he graph C ₄ is i	ph is an Euler digrant. a digraph. $\chi(G) = 2$. A cover is an independent of $K_{2,2}$.	endent set.	
(e) (f) (g)	Prove: If G is a bipar What is Four color p Prove or disprove: A Prove or disprove: T	tite graph, then roblem? minimal vertex he graph C ₄ is i	$\chi(G) = 2$. x cover is an independent of $K_{2,2}$.		

٤,	(a)	Define the following digraphs with examples:	[6]
-		(i) Asymmetric (ii) complete asymmetric (iii) Symmetric (iv) complete symmetric	[սյ
-	(b)	Let G be a digraph such that either for every $v \in V(G)$, $d^+(v) > 0$ or for every	[6]
		$v \in V(G)$, $d(v) > 0$. Prove that G has a directed circuit.	[o]
	:	OR	
٠	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.	[6]
4.	(a)	Let A and B denote resp. the incidence matrix and circuit matrix of a digraph G without self-loop. Then prove that $AB^{T} = 0$.	[6]
	(b)	Define the following with examples:	[6]
		(i) out-tree & spanning out-tree (ii) in-tree & spanning in-tree.	r.,]
		OR	
	(b)	Prove: An arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
5.	(a)	Prove: If G is a simple graph with n vertices & $2\delta(G) \ge n \ge 3$, then G is Hamiltonian	FZ1
	(b)	Let G be a k-chromatic graph with n vertices. Prove that $n \le k \alpha(G)$.	[6]
		OR	[6]
	(b)	Define chromatic number $\chi(G)$ of a graph G. Give an example of a non-complete graph G with $\chi(G) = \Delta(G) + 1$.	[6]
6.	(a)	Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.	Γ / 1
	(b)	Prove: A matching M in graph G is maximum if and only if G has no M-augmenting path.	[6] [6]
		OR	
	(b)	Define $\alpha'(G)$, $\beta'(G)$ and find it with the corresponding sets for $G = K_{n,m}$ $(n \neq m)$.	[6]

X~X-X-X-X

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - II Examination	
Saturday, 22 nd April, 2017	
PS02EMTH04, Mathematical Classical Mechanics Time: 10:00 a.m. to 1:00 p.m. Maximum marks: 70	
Note: All the questions are to be answered in answer book only. Figures to the right indicate	
Assume standard notations wherever applicable.	
Q-1 Choose the most appropriate option for each of the following	QΪ
1. Motion of a particle outside a sphere is constraint.	8]
(a) a holonomic (b) a non-holonomic (c) a rheonomic (d) not a	
2. Degrees of freedom of a particle moving on a plane given by $y = 3z + 5$ is	
(a) 0 (b) 1 (c) 2 (d) 2	
5. The curve of shortest distance between two points in space is a	
(a) great circle (b) straight line (c) category (d) cycleid	
4. If Lagrangian L does not depend on a generalized coordinated q_j explicitly then is conserved.	
(a) Lagrangian (c) total energy	
(b) Hamiltonian (d) generalized momentum p_j	
5. If all coordinates are cyclic then Routhian $R = $	
(a) /, (b) I	
6. Which one of the following is correct?	
(a) $\frac{\partial H}{\partial p_j} = -q_j$ (b) $\frac{\partial H}{\partial p_i} = -\dot{q}_j$ (c) $\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$ (d) $\frac{\partial L}{\partial t} = -\frac{dH}{dt}$	
7. Pick up the incorrect statement from the following:	Ž,
(a) A symplectic matrix is singular	
(b) Jacobian matrix for a canonical transformation is symplectic	
(c) Identity matrix is symplectic	
(d) Canonical transformations are invertible	
8. $\{p_2, q_1\} = \underline{}$; notations being usual. (a) 0 (b) 1 (c) 1	
(c) -1 (d) p_2q_1	
Q-2 Attempt Any Seven of the following: [14]	
(a) State the constraints for the motion of a simple pendulum.	
(b) State Lagrange's equations of motion when conservative force is present.	
(c) State the condition for extremum of $I = \int_{x_1}^{x_2} f(y_1, y_2, \dots, y_n, \dot{y}_1, \dot{y}_2, \dots, \dot{y}_n, x) dx$.	
(d) Define cyclic coordinate. (d) Define cyclic coordinate.	
(e) State Hamilton's equations of motion in matrix form.	
(f) State Hamilton's modified principle.	
- ·	

motion if and only if H does not depend on t explicitly.

(g) If H denotes the Hamiltonian of a system then show that H is a constant of

(h) State the transformation equations for a generating function of type F₃.
(i) Using Poisson brackets, show that the following transformation is canonical: Q = 1/p, P = qp².
Q-3 (a) Using D'Alembert's principle, derive Lagrange's equations of motion in the form dt (\frac{\partial T}{\partial q_j}\) - \frac{\partial T}{\partial q_j} = Q_j, j = 1, 2, ..., n.
(b) What is simple harmonic oscillator? Obtain Lagrange's equation of motion for a simple harmonic oscillator.

[6]

[6]

- (b) Show that $L' = L + \frac{dF(q_1, q_2, \dots, q_n, t)}{dt}$ also satisfies Lagrange's equations of motion, where L is given Lagrangian of a system and F is an arbitrary differentiable function of its arguments. [6]
- Q-4 (a) Using calculus of variations, determine the curve of shortest distance between two points in a plane. [6]
 - (b) The Lagrangian of a system is given by $L = \frac{I_1}{2}(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_3}{2}(\dot{\psi} + \dot{\phi} \cos \theta)^2 mgl \cos \theta.$ Obtain all generalized momenta. Which of them are conserved? Justify your answer

OR

- (b) If constraints are sceleronomic, potential is velocity independent and Lagrangian does not depend on t explicitly then show that the total energy of the system is conserved.
- Q-5 (a) Using Legendre transformation derive Lagrange's equations of motion from Hamilton's equations of motion. [6]
 - (b) Lagrangian of a 2-dimensional isotropic oscillator is given by $L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) \frac{k}{2}(x^2 + y^2).$ Obtain the corresponding Hamiltonian.

OR

- (b) Derive Hamilton's equations of motion from Hamilton's modified principle. [6]
- Q-6 (a) Show that Poisson brackets of two constants of motion is also a constant of motion.
 (b) Define canonical transformation. Check whether the transformation Q = q tan p and P = log sin p is canonical or not.

ΩĐ

(b) Define Poisson bracket. Compute [u, v] and [[u, v], v] for u = q and $v = \frac{p^2}{2m} - mcq$, where c is constant, q is generalized coordinate and p is generalized momentum conjugate to q.

###