[49 & A-18] Secret No-

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester IV

Thursday, 20 October 2016

2.00 p.m. to 5.00 p.m.

PS04CMTH01 - Complex Analysis II

Maximum Marks: 70

				THE THE PARTY OF T		
-	Fill in the blanks. The value of the index number on the unbounded component is				[8]	
(+)	(a) 0	(b) 1	(c) ∞	(d) none of these		
(2)	The Casoratti-Wei	of an function near				
	(a) pole(b) removable singularity		(c) essential singularity(d) None of these			
(3)) The number of zeros of $z^4 + 1$ in the first quadrant is					
	(a) 1	(b) 2	(c) 3	(d) 4		
(4)	Let f be analytic on the open unit disc $ z < 1$. Suppose that $ f(z) \le 1$ for every z and $ f(z_0) = z_0 $ for some nonzero z_0 . Then					
	(a) $ f'(0) = 1$	(b) $ f'(0) \le 1$	(c) $ f'(0) > 1$	(d) none of these		
(5)	The integral of $\frac{2z+1}{z^2+6z+9}$ along the positively oriented circle $ z =2$ is					
	(a) πi	(b) $2\pi i$	(c) $4\pi i$	(d) none of these		
(6)	Theorem provides the example of an infinite dimensional space in which closed and bounded subsets are compact.					
	(a) Hadamard's Theorem(b) Riemann Mapping Theorem		(c) Schwarz's Lemma (d) Montel's Theorem			
(7)	The infinite product $\prod_{n=1}^{\infty} (1 + \frac{1}{n^z})$ converges if					
	(a) Re $z > 2$	(b) Re $z < 2$	(c) Im $z < 2$	(d) none of these		
(8)) With usual symbols $\varphi_a'(a)$ is					
	(a) $\frac{1}{1- a ^2}$	(b) $1 - a ^2$	(c) $\frac{1- a ^2}{1- a ^2}$	(d) none of these		

	Q.2 Attempt any Seven.					
	Show that $-n(\gamma; a) = n(-\gamma; a)$.					
٠,	State Morera's Theorem.					
	Define a normal family. Let γ be a closed rectifiable curve and a does not belong to the trace of γ . Then find					
(4)	out the value of $\int_{\gamma} (z-a)dz$.					
(e)	State Cauchy Integral Formula in First Version.					
٠,	Show that straight lines are convex.					
(g)	Prove that $H(G)$ is a closed subset of $C(G,\mathbb{C})$.					
	State Hurwitz's Theorem.					
(i)	Suppose an infinite product $\prod_n z_n$ is absolutely convergent and $\text{Re } z_n > 0$ for all n . Then show that it is always convergent.					
Q.3		[6]				
	Prove that $n(\gamma; a)$ is a continuous function with respect to a .					
(a)	Let G be an open connected set, $f: G \to \mathbb{C}$ be analytic. Suppose $\{z \in G : f(z) = 0\}$ has a limit point in G. Show that there is a point $a \in G$ such that $f^{(n)}(a) = 0$ for all	[6]				
	$n \in \mathbb{N} \cup \{0\}.$					
OR						
(b)	State and prove Cauchy's Integral Formula in Second Version.	[6]				
$\hat{Q}.\hat{4}$						
(c)	State and prove Rouche's Theorem.	[6]				
(d)	State and prove Counting Zero Principle and illustrate it by an example.	[6]				
OR						
(d)	Deduce Fundamental Theorem of algebra from a well known result. State the result	[6]				
(~)	used here.					
O 5						
Q.5 (e)	Define a locally bounded family. If a family \mathcal{F} is normal, then show that it is locally	[6]				
(0)	bounded.	t-3				
(f)	Suppose $f_n, f \in H(G)$. If $f_n \to f$ in H(G), then show that $f_n^{(k)} \to f^{(k)}$ in H(G) for	[6]				
(1)	all $k \ge 1$.	[O]				
OR						
(£)		[6]				
(1)	State and prove Schwarz's lemma.	[6]				
Q.6		[6]				
	State Weierstrass Factorization Theorem and find a factorization of $\sin z$.	[6]				
(h)	Let Re $z_n > -1$. Then show that the series $\sum_n \log(1+z_n)$ converges absolutely if	[6]				
	and only if the series $\sum_n z_n$ converges absolutely. OR					
/1 \		[ይ]				
(n)	State and prove Riemann's Theorem on removable singularity.	[6]				
կիկերեր						
งางหางหาง 2						

[14]