Seat N	O	a.	No. of printed pages: 2	
[52]	SARDAR PATEL	UNIVERSIT	V	
L ~	M.Sc. Mathematics (Semes			
	Friday, April	,		
	PS64EMTH30, Oper	ations Research		
	02:00 p.m. to 05:00 p.m.	.1	Maximum marks: 70	
Note:	 All the questions are to be answered in Figures to the right indicate marks of the 			
	(3) Assume standard notations wherever ap		OII.	
	(4) Use of calculators in the examination is	•		
Q-1 Ch	oose the most appropriate answer from the	options given.		(08)
1. 1	For an LP in variables x_1, x_2 with constraints	$x_1 = 2, x_2 \le 5, x_1$	$+x_2 \le 20$, and $x_1, x_2 \ge 0$,	
	the solution space is			
	(a) singleton (b) infinite	(c) infeasible	(d) unbounded	
2.	Γhe right hand side of all the constraints of a	n LP expressed in e	quation form is	
	(a) zero (b) positive		· · · · · · · · · · · · · · · · · · ·	
	n simplex method, a tie for leaving variable			
	(a) degenerate (b) non-degenerate		, -	•
	f the primal is maximization type, then all the	ne constraints in the	dual are oftype.	
	$(a) \leqslant (b) =$	(c) ≥	(d) <	
	method cannot be applied to solve			
	a) Least-cost	(c) Northwest-cor	· · · · · · · · · · · · · · · · · · ·	
	b) Hungarian	(d) Vogel approximately		•
	is not a feasible solution for a 3×3			
	• •	(c) $x_{13} = 1, x_{21} =$, ·-	
		(d) $x_{11} = 1, x_{23} =$,	
_	Strictly unimodal single-variable functions ca			
•	a) direct search (b) simplex		(d) Hungarian	
	n a separable problem with three breakpoint w_1, w_2 , and w_3 satisfy the condition		ing non-negative weights	
	a) $w_1 + w_2 + w_3 = 0$ (b) $w_1 + w_2 + w_3 < 1$		= 1 (d) and ±and ±and = 3	
		(0) 101 102 103	$-1 (a) w_1 + w_2 + w_3 = 0$	
	empt Any Seven of the following:			(14)
(a)	How many basic solutions does an LP with dent equation constraints, where $n > m$ has	n decision variables $%$ Why?	s and m linearly indepen-	
(b)	State the penalty rule for artificial variables	s in objective functi	on for Big M -method.	
(c)	When can we say that an LP has infinite n	umber of alternative	e optima?	
(d)	Write the formula to determine the optimal variation primal inverse.	values of dual variab	les from the given optimal	
(e)	What conditions must be satisfied before so	olving an LP by the	dual simplex method?	
(f)	When a dummy destination is added to the	transportation mo	del?	
(g)	Explain how an assignment problem is a sp			
(h)	Define a separable function and give an exa	mple of it.		
(i)	Express the quadratic problem in matrix for subject to $x_1 + x_2 < 1$, $2x_1 + 3x_2 < 4$, and		$x_1 + 3x_2 - 4x_1x_2 - 2x_1^2 - 3x_2^2$	

- Q-3 (a) State the optimality and feasibility condition, and Gauss-Jordan row operations in the simplex method. (06)
 - (b) JOBCO manufactures two products on two machines. A unit of product 1 requires 2 hours on machine 1 and 1 hour on machine 2. For product 2, one unit requires 1 hour on machine 1 and 3 hours on machine 2. The profit per unit of products 1 and 2 are ₹30 and ₹20, respectively. The total daily available processing time for each machine is 8 hours. Compute the maximum profit by graphical method. Also, determine whether it is advisable to increase the capacity of machine 1 from 8 hours to 9 hours at ₹10 cost.

OR

- (b) Solve the LP by Big *M*-method: Maximize $z = 2x_1 + 2x_2 + 4x_3$ subject to $2x_1 + x_2 + x_3 \le 2$, $3x_1 + 4x_2 + 2x_3 \ge 8$, and $x_1, x_2 \ge 0$. (06)
- Q-4 (a) Check optimality of the solution with basic variables = (x_2, x_1) and inverse = $\begin{pmatrix} \frac{7}{45} & -\frac{2}{45} \\ -\frac{2}{45} & \frac{7}{45} \end{pmatrix}$ (06) for the LP: Maximize $z = 4x_1 + 14x_2$ subject to $2x_1 + 7x_2 + x_3 = 21$, $7x_1 + 2x_2 + x_4 = 21$, and $x_1, x_2, x_3, x_4 \ge 0$.
 - (b) Describe the steps to formulate the dual problem from a given LP primal. (06)
 - (b) Express the LP in equation form and hence write its dual: Maximize $z = x_1 + x_2$ subject to $2x_1 + x_2 = 5$, $3x_1 x_2 = 6$, and x_1, x_2 both unrestricted. (06)
- Q-5 (a) Solve the LP by dual simplex method: Minimize $z = 2x_1 + 3x_2$ subject to $2x_1 + 2x_2 \le 3$, $x_1 + 2x_2 \ge 1$, and $x_1, x_2 \ge 0$. (06)
 - (b) Describe the Vogel approximation method to obtain the starting solution of a transportation problem. (06)

(06)

(06)

OR

(b) Solve the following assignment problem by Hungarian method.

A 1 4 6 3 B 9 7 10 9 C 4 5 11 7 D 8 7 8 5

- Q-6 (a) Express the following separable nonlinear problem into linear form by using appropriate breakpoints and weights. Maximize $z = x_1 + x_2^4$ subject to $3x_1 + 2x_2^2 \le 9$, $x_2 \le 3$, and $x_1, x_2 \ge 0$.
 - (b) Explain the gradient method for maximizing twice continuously differentiable function $f(\mathbf{X})$ using steepest ascent in case of unconstrained problems. (06)

OR

(b) By Dichotomous method, find the interval of uncertainty I_2 after two iterations for

Maximize
$$f(x) = \begin{cases} 3x, & 0 \le x \le 2\\ \frac{1}{3}(-x+20) & 2 \le x \le 3. \end{cases}$$

Assume initial interval $I_0 = (0,3)$ and $\Delta = 0.1$ as the desired level of accuracy.

