[11]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester IV) Examination

Date: 25-4-2018

Time: 2.00 To 5.00 p.m.

Subject: MATHEMATICS

Paper No. PS04EMTH29 - (Graph Theory - II)

Total Marks: 70

Choose the correct option for each question: 1.

[8]

- The number of spanning trees in K₆ is (1)
 - (a) 6
- (b) 6^2
- (c) 6^3
- (d) 6^4

(2) For a star graph, Pruffer code has ____digits.

- (a) only two different (b) all different (c) all same
- (d) none of these
- A shortest spanning tree in a graph can be obtained using
 - (a) BFS algorithm

- (b) Kruscal algorithm
- (c) Dijkstra's algorithm
- (d) none of these
- In a network, if s is source and t is sink, then
 - (a) $d^+(s) > 0$, $d^-(t) = 0$
- (b) $d^+(s) = 0 = d^-(t)$
- (c) $d^{+}(s) > 0$, $d^{-}(t) > 0$
- (d) $d^+(s) = 0$, $d^-(t) > 0$
- (5) Let A be a matrix with spectrum $\{-2, 2, 3\}$. Then spectrum of $A^2 =$
 - (a) $\{-2,2,3\}$
- (b) $\{4,9\}$
- (c) $\{2,4,3,6,9\}$
- (d) $\{-4,4,-6,6,9\}$
- Let $G = K_{4.6}$. Then the non-zero eigen values for G is
- (b)·6
- (d) 4

- The Ramsey number R(3, 3)
 - (a) = 3
- (b) = 6
- (c) = 9
- (d) none of these
- (8) If $E = \{1, 2, 3\}$ with $M = \{\phi, \{1\}, \{2\}, \{3\}\}\$ as hereditary system, then r(E) is
 - (a) 1
- (b) 2
- (c)3
- (d) 0

Attempt any SEVEN: 2.

[14]

- Give one graceful labeling of P₆ with detail. (a)
- Define contraction of a graph by an edge and give one example of it.
- Define flow and cut in a network. (c)
- Define u-v vertex separating set and give one example of it. (d)
- Let A be a matrix with spectrum $\{-2, -1, 2, 3, 1\}$. Then find det(A). (e)
- (f) If $G = C_7$, then find $\lambda_{max}(G)$.
- Prove: The Ramsey number $R(2, p) = p, \forall p \ge 2$. (g)
- Show that $E = \{1, 2, 3\}$ with base $B_M = \{\{1, 2\}, \{1, 3\}\}$ is a graphic matroid. (h)
- If E = \mathbb{Z} with $M = \{X \subset E; |X| < 7\}$ as hereditary system, then find $B_M \& C_M$. (i)

- 3. (a) How many trees are there with degree sequence (3,1,1,1,3)? Construct any one such tree. [6]
 - (b) Find $\tau(G)$ using Matrix-Tree theorem, for $G = K_{2,3}$.
 - (b) Show that if a tree T with m edges has graceful labeling, then K_{2m+1} can be decomposed into (2m+1) copies of T. [6]
- 4. (a) Using Dijkstra's algorithm, find a least weight path from s to t in graph (G): [6]
 - (b) Prove that in every network, there exists a flow with maximum value equals the minimum capacity of cuts. [6]

OR

(b) List all the cuts and find a minimum cut for the following network (N). [6]

5 4 5 1

Z

(N)

5 J 4 (G)

- [6]
- (b) (i) Prove: If G is a bipartite graph, then non-zero eigen values of G occur in pair (λ,-λ).
 (ii) Give a serious formula (β)
 - (ii) Give an example of a non-complete graph G with $\chi(G) < 1 + \lambda_{\max}(G)$.

OR

- (b) (i) Prove: For any graph G, $\lambda_{max}(G) \le \Delta(G)$.
 - (ii) Find $sp(K_{2,2})$.

5

[6]

[6]

- 6. (a) Prove: $R(p, q) \ge (p-1)(q-1) + 1$.
 - Prove (ANY ONE): In a hereditary system,

- [6]
- (i) Sub modularity property (R) ⇒ Weak elimination property (C).
- (ii) Uniformity property (U) ⇒ Base Exchange property (B).