[26]

Sardar Patel University

M.Sc. (Mathematics) (Sem-IV); Examination 2018; PS04EMTH27: Banach Algebras;

23-04-2018; Monday; Time-2.00 pm to 5.00 pm; Maximum Marks 70

Note: Notations and terminologies are standard. Throughout $\mathcal A$ is a unital Banach algebra

Q.1	Choose	correct	option	from	given	four	choices

(i) Which of the following function belongs to $C^1([0,1])$?

- - (a) $f(t) = t^{\frac{2}{3}}$
- (b) $f(t) = t^{\frac{3}{2}}$
- (c) $f(t) = t^{\frac{1}{3}}$
- (d) $f(t) = t^{\frac{1}{2}}$

[08]

(ii) Let $x \in A$. Then which of the following statements is true?

- (a) If x has left inverse, then it has a right inverse;
- (b) If x has a left inverse and a right inverse, then x is invertible;
- (c) The x has at most one right inverse;
- (d) The x has at most one left inverse.
- (iii) Let $x = (-1, 0, 1) \in \mathbb{C}^3$. Then the spectrum $\sigma(x) =$
 - (a) $\{-1,0,1\}$
- (b) $\{-1,1\}$
- (c) {0}
- (d) [-1,1]

(iv) Let $f(z) = z^{\frac{5}{2}}$ $(z \in \mathbb{D})$. Then the spectral radius r(f) of f in $A(\mathbb{D})$ is

- (a) 1
- (b) 2
- (c) 5
- (d) $\frac{5}{2}$

(v) Let \mathcal{A} be commutative, $\varphi \in \Delta(\mathcal{A})$, and $\ker \varphi$ be kernel of φ . Which of following is true?

- (a) Every element of $ker\varphi$ is invertible;
- (c) Every element of $\ker \varphi$ is singular;
- (b) At least one element of $\ker \varphi$ is invertible; (d) Every element of $\ker \varphi$ is a zero devisor.

(vi) Let \mathcal{A} be commutative. Then the Gel'fand space $\Delta(\mathcal{A})$ with the Gel'fand topology is a

(a) normal space;

(c) metric space;

(b) Banach space

(d) normed linear space;

(vii) Which of the following is not a Banach *-algebra with natural involution $f^*(x) = \overline{f(x)}$?

- (a) C(X)
- (b) $C^1[0,1]$ (c) $C^2[0,1]$
- (d) $A(\mathbb{D})$

(viii) Let \mathcal{A} be a commutative C^* -algebra and $x \in \mathcal{A}$ such that $x^* = x$. Then the spectrum $\sigma(x)$ of x is contained in

- (a) [0,1]
- (b) [-1,1]
- (c) ℝ⁺
- (d) ℝ

Q.2 Attempt any seven

[14]

- (i) Show that the set G of invertible elements is a group with ring multiplication.
- (ii) Prove that the set S of singular elements is closed in A.
- (iii) Define the spectrum $\sigma(x)$ and the spectral radius r(x) of an element x in A.
- (iv) Let $x, y \in A$ such that xy = yx. Prove that $r(xy) \le r(x)r(y)$.
- (v) State and prove Gel'fand Mazure theorem for a Banach algebra which is a division algebra.
- (vi) Let $r \in A$ such that 1 ar is invertible for every $a \in A$. Prove that $r \in Rad(A)$.
- (vii) Prove that every complex homomorphism on A is continuous.
- (viii) Let \mathcal{A} be commutative and $x \in \mathcal{A}$. Prove that $\widehat{x} : \Delta(\mathcal{A}) \longrightarrow \mathbb{C}$ is continuous.
- (ix) Define a Banach *-algebra and a C^* -algebra.

Q.3		
(a)	and a sometime that a be ene see of all published the state of about	
	in \mathcal{A} . Prove that $bd(S) \subset Z \subset S$. Define the set $l^1(\mathbb{Z})$ as well as all operations and a norm on $l^1(\mathbb{Z})$ to make it a Banach algebra.	[6]
	OR	[O]
(b)	Prove that the set G of all invertible element is open in \mathcal{A} and the mapping $g: G \longrightarrow G$ defined as $g(x) = x^{-1}$ is a homeomorphism.	[6]
Q.4		[0]
(a) (b)	Prove that the spectrum $\sigma(x)$ is a non-empty, compact subset of \mathbb{C} . Prove that $\inf\{\ x^n\ ^{\frac{1}{n}}:n\in\mathbb{N}\}=\lim_{n\to\infty}\ x^n\ ^{\frac{1}{n}}\ (x\in\mathcal{A}).$	[6]
	OR.	[0]
(b)	Define the radical $Rad(A)$. Prove that it is a closed, two sided ideal in A . State all results explicitly used in the proof.	[6]
Q.5		رحا
(b) .	Let X be a compact T_2 space. Prove that $\Delta(C(X)) \cong X$. Let \mathcal{A} be commutative, $\Delta(\mathcal{A})$ be the Gelfand space of \mathcal{A} , and $Max(\mathcal{A})$ be the space of all maximal ideals in \mathcal{A} . Define $\Lambda:\Delta(\mathcal{A})\longrightarrow Max(\mathcal{A})$ as $\Lambda(\varphi)=\ker \varphi$. Prove that Λ is a bijective map	[6]
	bijective map.	[6]
<i>/</i> - \	OR	(- J
(b) (2.6	Give sketch of the proof to show that $\Delta(A)$ is a contact, Hausdorff space.	[6]
(a) S	State and prove the Gel'fand-Neumark Theorem for a commutative C^* -algebra.	[6]
(b) S	State and prove Banach-Stone Theorem.	[6]
/1.\ 1	OR	
(u) 1 3	Let X be a compact, T_2 -space and I be a proper, closed ideal in $C(X)$. Prove that there is a nonempty, closed set $E \subset X$ such that $I = I(E) = \{f \in C(X) : f(x) = 0 \ (x \in E)\}.$	[6]

Autobilia (1)